Наименование: | Математическая логика. |
Определение: | Математическая логика — это раздел современной формальной логики, в котором логические выводы исследуются посредством логических исчислений на основе математического языка, аксиоматизации и формализации. |
Раздел: | Концепты научного дискурса |
Дискурс: | Наука |
Субдискурс: | Логика Логика формальная |
Связанные концепты: | Логика символическая |
Текст статьи: © А. С. Карпенко. А. И. Лойко. Подготовка электронной публикации и общая редакция: Центр гуманитарных технологий. Ответственный редактор: А. В. Агеев. Информация на этой странице периодически обновляется. Последняя редакция: 14.11.2024. | |
Математическая логика — это раздел современной формальной логики (см. Логика формальная), в котором логические выводы исследуются посредством логических исчислений на основе математического языка, аксиоматизации и формализации. В качестве другого названия современного этапа в развитии логики (см. Логика) используется также термин «символическая логика» (см. Логика символическая). Иногда термин «математическая логика» употребляется в более широком смысле, охватывая исследование свойств дедуктивных теорий, именуемое металогикой (см. Металогика) или метаматематикой. В целом, определение «математическая логика» подчёркивает её сходство с математикой, основывающееся, прежде всего, на методах построения логических исчислений на основе строгого символического языка, аксиоматизации и формализации. Они позволяют избежать двусмысленной и логической неясности естественного языка, которым пользовалась при описании правильного мышления традиционная логика, развивавшаяся в рамках философии (см. Философия). Математические методы дали логике такие преимущества, как высокая точность формулировок, возможность изучения более сложных, с точки зрения логической формы, объектов. Многие проблемы, исследуемые в математической логике, вообще невозможно было сформулировать с использованием только традиционных методов. Применение в логике математических методов становится возможным тогда, когда суждения формулируются на некотором точном (формализованном) языке. Такие точные языки имеют две составляющие: синтаксис (см. Синтактика) и семантику (см. Семантика). Синтаксисом называется совокупность правил построения объектов языка (обычно называемых формулами). Семантикой называется совокупность соглашений, описывающих наше понимание формул (или некоторых из них) и позволяющих считать одни формулы верными, а другие — нет. Уже в Античности (в частности Аристотелем) широко применялись буквенные обозначения для переменных. Идея построения универсального языка для всей математики, для формализации на базе такого языка математических доказательств и вообще любых рассуждений выдвигалась в XVII веке Г. В. Лейбницем. Но только к середине XIX века стало очевидным, что существующая логическая парадигма, а именно аристотелевская силлогистика (см. Силлогистика), уже не отвечает требованиям развития науки того времени. С одной стороны, значительные успехи абстрактной алгебры в особенности в теории групп позволили перенести алгебраические методы на другие области науки. Это с успехом проделала английская школа, основоположником которой можно считать А. де Моргана, который в 1847 году опубликовал книгу «Formal Logic; or The Calculus of Inference, Necessary and Probable». Им открыты названные в его честь законы де Моргана, разработана теория отношений и в 1838 определено понятие математической индукции. Однако наибольшую известность получили работы Дж. Буля. В 1847 году он публикует брошюру «Mathematical Analaysis of Logic», а в 1854 — свой главный труд по логике «An Investigation into the Laws of Thought, on which are Founded the Mathematical Theories of Logic and Probabilities». Как и де Морган, Дж. Буль был одним из тех математиков из Кембриджа, которые признали чисто абстрактную природу алгебры. Они заметили, что простейшие операции над множествами подчиняются законам коммутативности, ассоциативности и дистрибутивности. Оставалось только провести аналогию между объединением и сложением, пересечением и умножением, пустым классом и нулём, универсальным классом и единицей. Работы Буля 1847 и 1854 годов можно считать началом алгебры логики (см. Алгебра логики), первоначальный этап развития которой был завершён Э. Шрёдером в трёхтомной монографии «Vorlesungugen uber die Algebra der Logik» (1890–1905). С другой стороны, возникновение и развитие математической логики связано с работами Г. Фреге и Ч. С. Пирса. После того, как Фреге в 1879 и Пирс в 1885 году ввели в язык алгебры логики предикаты, предметные переменные и кванторы, возникла реальная возможность построения системы логики в виде логического исчисления, что и было сделано Фреге, который по праву считается основателем математической логики в её современном понимании. Пытаясь реализовать идеи Лейбница, Фреге в своём труде «Begriffsschrift» предложил символическую запись для строгих рассуждений. Хотя его нотация сейчас совсем не используется (например, формулы рисовали в виде двумерного дерева), Фреге в действительности впервые построил исчисление предикатов. Исчисление предикатов есть формальная система, состоящая из двух частей: символического языка и логики предикатов (см. Логика предикатов). Кроме этого для исчисления предикатов Фреге даёт строгое определение понятия «доказательство», которое является общепринятым и по сей день. Основы современной логической символики были разработаны Дж. Пеано, чьи интересы, как и Фреге, концентрировались вокруг оснований математики и развития формально-логического языка. Его широко известный труд «Formulaire de mathématiques», опубликованный (в соавторстве) в Основным стимулом развития математической логики в начале XX века была проблема оснований математики. К. Вейерштрасс, Р. Дедекинд и Г. Кантор показали, что в качестве фундамента всей классической математики может рассматриваться арифметика целых чисел. Дедикинд и Пеано аксиоматизировали арифметику, а Фреге дал определение натурального числа как множества всех равномощных множеств. Таким образом, вся математика сводилась к теории множеств. Рефлексия над феноменом множеств привела к обнаружению ряда парадоксов в теории множеств, ответом на которые стало развитие четырёх направлений в основаниях математики:
Развитие и применение технического аппарата самой логики в первую очередь относится к программе Д. Гилберта (начиная с 1904 года), где была поставлена главная задача: найти строгое основание для математики посредством доказательства её непротиворечивости, то есть доказательства того факта, что в ней недоказуема никакая формула вида A вместе с формулой ~ А. Для этого потребовалось развить теорию доказательств, после чего, считал Гилберт, используя только финитные методы, можно будет доказать непротиворечивость теории множеств и самой теории действительных чисел и таким образом решить проблему оснований математики. Однако результат К. Гёделя о неполноте арифметики (1931) убедительно показал, что программа Гилберта невыполнима. Теорема Гёделя о неполноте утверждает, что всякая достаточно богатая теория необходимо содержит утверждения, которые нельзя ни доказать, ни опровергнуть, не опровергнув самой теории. С Обширным полем деятельности для современной математической логики является теория рекурсии, которая в первую очередь имеет дело с проблемой разрешимости: доказуема или нет формула A из некоторого множества посылок. Эти исследования привели к теориям вычислимости, к созданию компьютерных программ автоматического поиска доказательств. Решение проблемы разрешимости послужило основным стимулом для создания теории алгоритмов. Формулировка тезиса Чёрча — Тьюринга, утверждающего, что понятие общерекурсивной функции является уточнением интуитивного понятия алгоритма, стало наиболее важным достижением математической логики. Только после уточнения понятия алгоритма выяснилось, что в хорошо известных разделах математики существуют алгоритмически неразрешимые проблемы. Важное место в современной математической логике занимает теория моделей (см. Теория моделей), которая изучает фундаментальные связи между синтаксическими свойствами множеств предложений формального языка, с одной стороны, и семантическими свойствами их моделей, с другой; и вообще, изучаются соотношения между моделями и теориями, а также преобразование моделей. Зачастую модели используются как инструмент для того, чтобы показать, что некоторая формула A не может быть дедуцирована из определённого множества постулатов или, если A есть аксиома, то показать недоказуемость A из остальных аксиом системы, к которой A принадлежит (если это возможно). Тогда A является независимой аксиомой. Наряду с этим стало очевидно, что те впечатляющие результаты, которые были получены средствами математической логики, и в первую очередь в области оснований математики, привели к некоторому гипостазированию функции и предмета самой этой логики. Так, в предисловии к «Handbook of Mathematical Logic» (1977) Дж. Барвайс пишет: «Математическая логика традиционно подразделяется на четыре раздела: теория моделей, теория множеств, теория рекурсии и теория доказательств». В свою очередь в «Encyclopedia Britanica» (CD–1998), уже применительно к математической логике, четыре указанных раздела названы «четырьмя главными областями исследования». Более точно было бы говорить о применении технического аппарата логики в данных областях, поскольку теория множеств и теория рекурсии сами по себе являются самостоятельными математическими дисциплинами и не являются частью математической логики. Теория доказательств для некоторых математиков-логиков превратилась чуть ли не в «метаматематику» (термин Гилберта), а теория моделей давно вышла за пределы логической семантики. Развитие современной логики показывает, что термин «математическая логика» постепенно сужается и часто используется для обозначения области исследования тех типов рассуждений, которыми пользуются математики, тем самым приобретая всё большее методологическое и прикладное значение, прежде всего в рамках вычислительной математики и связанных областей. В целом, символизация и представление различных логических теорий в виде исчислений стало обычным делом и поэтому строго разделить современные логические исследования на относящиеся к математической логике и не относящиеся к ней порой просто невозможно. |
|
Библиография |
|
---|---|
Издания на русском языке: |
|
|
|
Издания на других языках: |
|
|
|