Наименование: | Система (образовано от греческого слова: σύστεμα — целое, составленное из частей; соединение). |
Определение: |
Система — это совокупность элементов произвольной природы, находящихся в отношениях и связях друг с другом, которая образует определённую целостность.
Автор определения: А. С. Бергман.
|
Раздел: |
Концепты философского дискурса Концепты научного дискурса |
Дискурс: |
Наука Философия |
Связанные концепты: |
Структура Системный подход Общая теория систем |
Текст статьи: © В. Н. Садовский. А. Ю. Бабайцев. Н. Д. Дроздов. В. Н. Чернышов. П. С. Александров. Подготовка электронной публикации и общая редакция: Центр гуманитарных технологий. Ответственный редактор: А. В. Агеев. Информация на этой странице периодически обновляется. Последняя редакция: 14.11.2024. | |
Система — это совокупность элементов произвольной природы, находящихся в отношениях и связях друг с другом, которая образует определённую целостность. Энергия связей между элементами системы превышает энергию их связей с элементами других систем, тем самым формируя систему в качестве целостного образования. Категория системы задаёт онтологическое ядро системного подхода (см. Системный подход). Формы объективации этой категории в разных вариантах подхода различны и определяются используемыми теоретико-методологическими представлениями и средствами. Понятие системыИсключительное многообразие представлений о системе в человеческом познании порождает стремление редуцирования характеристик системы к некоторому минимуму. При всём разнообразии истолкований, понимание системы в самом общем плане традиционно включает в себя представление о единстве и целостности взаимосвязанных между собой её элементов, то есть предполагает рассмотрение системы как объекта, прежде всего, с точки зрения целого. Семантическое поле такого понимания включает термины «элемент», «целое», «единство», «связь», «взаимодействие», а также «структура» — схема связей между элементами системы (см. Структура). Структура системы предполагает упорядоченность, организацию, устройство, обусловленные характером взаимоотношений между элементами и её взаимоотношением со внешней средой, в которых проявляются два противоположных свойства системы: ограниченность (внешнее свойство системы) и целостность (внутреннее свойство системы). Понятие системы имеет чрезвычайно широкую область применения (практически каждый объект может быть рассмотрен как система), поэтому достаточно полное понимание категории системы предполагает построение семейства соответствующих определений — как содержательных, так и формальных. Лишь в рамках такого семейства определений удаётся выразить основные признаки систем и соответствующие им системные принципы:
Соответственно указанному подходу, общую схему компонентов системы можно представить следующим образом:
Свойства системыСреди множества свойств, присущих системам, выделяются наиболее важные, характеризующие их функционирование:
Развитие системных представленийПриродная системность человеческого мышления, деятельности и связанных с ними практик является одним из объективных факторов возникновения и развития системных понятий и теорий. Естественный рост системности человеческой деятельности сопровождается её усовершенствованием на протяжении всей истории развития человека. В современном обществе системные представления уже достигли такого уровня, что мысли о полезности системного подхода применительно к любой деятельности являются привычными и общепринятыми. Претерпев длительную историческую эволюцию, понятие «система» в XX веке становится одним из ключевых философско-методологических, общенаучных и специально-научных понятий. В современном научном (см. Наука) и техническом (см. Техника) знании разработка проблематики, связанной с исследованием и конструированием систем разного рода, проводится в рамках системного подхода (см. Системный подход), общей теории систем (см. Общая теория систем), различных специальных теорий систем, системном анализе, в кибернетике, системной инженерии (см. Системная инженерия), синергетике (см. Синергетика) и многих других областях. Первые представления о системе возникли в античной философии, выдвинувшей онтологическое истолкование системы как упорядоченности и целостности бытия (см. Бытие), а также идею системности знания (целостность знания, аксиоматическое построение логики, геометрии). В античной философии и науке понятие системы включается в контекст философских поисков общих принципов организации мышления и знания. Для понимания генезиса понятия системы принципиален момент включения мифологических представлений о Космосе, Мировом порядке, Едином и тому подобных категорий в контекст собственно философско-методологических рассуждений. Например, сформулированный в Античности тезис о том, что целое больше суммы его частей, имел уже не только мистический смысл, но и фиксировал проблему организации мышления. Пифагорейцы и элеаты решали проблему не только объяснения и понимания мира, но и онтологического обоснования используемых ими рациональных процедур. Число и Бытие — начала, не столько объясняющие и описывающие мир, сколько выражающие точку зрения становящегося рационального мышления и требование мыслить единство многого. Платон выражает это требование уже в явном виде: «Существующее единое есть одновременно и единое и многое, и целое и части…» Только единство многого, то есть система, может быть, согласно Платону, предметом познания. Отождествление стоиками системы с Мировым порядком можно осмыслить только с учётом всех этих факторов. Воспринятые от Античности представления о системности бытия развивались как в системно-онтологических концепциях Б. Спинозы и Г. В. Лейбница, так и в построениях научной систематики Принципы системной природы знания разрабатывались в немецкой классической философии: согласно И. Канту, научное знание есть система, в которой целое главенствует над частями; Ф. Шеллинг и Г. В. Ф. Гегель трактовали системность познания как наиболее важное требование теоретического мышления. В западной философии второй половины XIX — начала XX века содержатся постановки, а в отдельных случаях и решения некоторых проблем системного исследования: специфики теоретического знания как системы (неокантиантво), особенностей целого (холизм, гештальт-психология), методы построения логических и формализованных систем (неопозитивизм). Определённый вклад в разработку философских и методологических оснований исследования систем внесла марксистская философия, основанная на принципах материалистической диалектики (всеобщей связи явлений, развития, противоречия и других). Для начавшегося со второй половины XIX века проникновения понятия системы в различные области конкретно-научного знания важное значение имело создание эволюционной теории Ч. Дарвина, теории относительности, квантовой физики, позднее — структурной лингвистики. Возникла задача построения строгого определения понятия системы и разработки оперативных методов анализа систем. Приоритет в этом отношении принадлежит разработанной А. А. Богдановым в начале XX века концепции всеобщей организационной науки — тектологии. Эта теория в своё время не получила достойного признания и только во второй половине XX века значение тектологии Богданова было адекватно оценено. Ряд конкретно-научных концепций систем и принципов их анализа был сформулирован в 1930– Повсеместное распространение идей системных исследований и системного подхода является одной из характерных особенностей научного и технического знания XX века. Развитие инженерного подхода и технологий в XX веке открывает эру искусственно-технического освоения систем. Теперь системы не только исследуются, но проектируются и конструируются. Одновременно оформляется и организационно-управленческая установка: объекты управления также начинают рассматриваться как системы. Это приводит к выделению всё новых и новых классов систем: целенаправленных, самоорганизующихся, рефлексивных и других. Сам термин «система» входит в лексикон практически всех профессиональных сфер. Начиная с середины XX века широко разворачиваются исследования по общей теории систем и разработки в области системного подхода, складывается межпрофессиональное и междисциплинарное системное движение. В настоящее время основная задача специализированных теорий систем заключается в построении конкретно-научного знания о разных типах и разных аспектах систем, в то время как главные проблемы общей теории систем концентрируются вокруг логико-методологических принципов анализа систем, построения метатеории системных исследований. В рамках этой проблематики особое значение имеет установление методологических условий и ограничений применения системных методов. К числу таких ограничений относятся, в частности, так называемые системные парадоксы, например парадокс иерархичности (решение задачи описания любой данной системы возможно лишь при условии решения задачи описания данной системы как элемента более широкой системы, а решение последней задачи возможно лишь при условии решения задачи описания данной системы как системы). Выход из этого и аналогичных парадоксов состоит в использовании метода последовательных приближений, позволяющего путём оперирования неполными и заведомо ограниченными представлениями о системе постепенно добиваться более адекватного знания об исследуемой системе. Анализ методологических условий применения системных методов показывает как принципиальную относительность любого, имеющегося в данный момент времени описания той или иной системы, так и необходимость использования при анализе любой системы всего арсенала содержательных и формальных средств системного исследования. Вместе с тем, несмотря на широкое распространение системных исследований, категориальный и онтологический статус «системы как таковой» остаётся во многом неопределённым. Это вызвано, с одной стороны, принципиальными различиями в профессиональных установках сторонников системного подхода, с другой стороны, попытками распространить это понятие на чрезвычайно широкий круг явлений, и наконец, процедурной ограниченностью традиционного понятия системы. Во всём многообразии трактовок систем продолжают сохраняться два подхода. С точки зрения первого из них (его можно назвать онтологическим или, более жёстко, натуралистическим), системность интерпретируется как фундаментальное свойство объектов познания. Тогда задачей системного исследования становится изучение специфически системных свойств объекта: выделение в нём элементов, связей и структур, зависимостей между связями и тому подобных категорий. Причём элементы, связи, структуры и зависимости трактуются как «натуральные», присущие «природе» самих объектов и в этом смысле объективные. Система в таком подходе полагается как объект, обладающий собственными законами жизни. Другой подход (его можно назвать эпистемолого-методологическим) заключается в том, что система рассматривается как эпистемологический конструкт, не имеющий естественной природы, и задающий специфический способ организации знаний и мышления. Тогда системность определяется не свойствами самих объектов, но целенаправленностью деятельности и организацией мышления. Различие в целях, средствах и методах деятельности неизбежно производит множественность описаний одного и того же объекта, что порождает в свою очередь установку на их синтез и конфигурирование. Классификация системСущественным аспектом раскрытия содержания трактовок систем является выделение различных типов систем, при этом разные типы и аспекты систем — законы их строения, поведения, функционирования, развития и так далее — описываются в соответствующих специализированных теориях систем. Для выделения классов систем могут использоваться различные классификационные признаки. Основными из них считаются: природа элементов системы, происхождение, длительность существования, изменчивость свойств, степень сложности, отношение к среде, реакция на возмущающие воздействия, характер поведения и степень участия людей в реализации управляющих воздействий. К настоящему времени сформировался ряд классификаций систем, использующих указанные основания. В наиболее общем плане системы можно разделить по природе их элементов на материальные (реальные) и идеальные (абстрактные). Деление систем на материальные и абстрактные позволяет различать реальные системы (объекты, явления, процессы) и системы, являющиеся определёнными отображениями (моделями) реальных объектов или чистыми абстракциями. Материальные системы представляют собой целостные совокупности объектов различных областей действительности и, в свою очередь, делятся на системы, состоящие из элементов неорганичной природы (физические, геологические, химические и другие) и живые системы, куда входят как простейшие биологические системы, так и очень сложные биологические объекты типа организма, вида, экосистемы. Материальные системы бывают относительно простыми и относительно сложными. Более простые системы состоят из относительно однородных непосредственно взаимодействующих элементов. В более сложных системах элементы группируются в подсистемы, вступающие во взаимоотношения как некоторые целостности. Особый класс материальных живых систем образуют социальные системы, многообразные по типам и формам (от простейших социальных объединений до социально-экономической структуры общества). Идеальные (абстрактные) системы представляют собой продукты человеческого мышления, элементы которых не имеют прямых аналогов в реальном мире и представляют собой идеальные объекты — понятия или идеи, связанные определёнными взаимоотношениями. Они создаются путём мысленного отвлечения от тех или иных сторон, свойств и/или связей предметов и образуются в результате творческой деятельности человека. Они также могут быть разделены на множество различных типов (особые системы представляют собой научные понятия, гипотезы, теории, системы уравнений и тому подобные). Абстрактной системой является, например, система понятий той или иной науки. К числу абстрактных систем относятся и научные знания о системах разного типа, как они формулируются в общей теории систем, специальных теориях систем и других областях. В современной науке большое внимание уделяется исследованию языка как [семиотической] системы; в результате обобщения этих исследований возникла общая теория знаков — семиотика (см. Семиотика). Задачи обоснования математики и логики (см. Логика) вызвали интенсивную разработку принципов построения формализованных логических систем. Результаты этих исследований широко применяются во всех областях науки и техники. В целом, формализованные логические системы подразделяются на три основных класса:
В зависимости от происхождения систем, выделяют естественные и искусственные системы. Естественные системы, будучи продуктом развития природы, возникли без вмешательства человека. Искусственные системы представляют собой результат созидательной деятельности человека, причём со временем их количество постоянно увеличивается. По длительности существования системы подразделяются на постоянные и временные. К постоянным обычно относятся естественные системы, хотя с точки зрения диалектики все существующие системы — временные. К постоянным принято относить и искусственные системы, которые в процессе заданного времени функционирования сохраняют существенные свойства, определяемые предназначением этих систем. В зависимости от степени изменчивости свойств систем, выделяются статичные и динамичные системы. Для статичной системы характерно, что её состояние с течением времени остаётся постоянным (например, газ в ограниченном объёме — в состоянии равновесия). Динамичная система изменяет своё состояние во времени (например, живой организм). Если знание значений переменных системы в данный момент времени позволяет установить состояние системы в любой последующий или любой предшествующий моменты времени, то такая система является однозначно детерминированной. Для вероятностной (стохастической) системы знание значений переменных в данный момент времени позволяет предсказать вероятность распределения значений этих переменных в последующие моменты времени. Поведение указанных классов систем описывается с помощью дифференциальных уравнений, задача построения которых решается в математической теории систем. По характеру взаимоотношений систем с внешней средой, выделяют закрытые и открытые системы. Закрытые (изолированные) системы физически изолированы от внешней среды. Все статические системы являются закрытыми, что, однако, не исключает присутствия динамических процессов в закрытых системах. В соответствии со вторым законом термодинамики, способность изолированных физических систем поддерживать постоянный обмен веществ и энергии со временем ослабевает, в результате чего система расходует запас энергии, вследствие чего энтропия такой системы стремится к своему максимуму. В таких системах нивелируются различия, а процессы самоорганизации в них невозможны. Второе начало термодинамики предсказывает довольно пессимистический прогноз однородного будущего изолированных систем. Изолированных и закрытых систем в природе фактически не существует. Если проанализировать пример любой из таких систем, то можно убедиться, что не существует абсолютных «изолирующих экранов» сразу от всех форм материи или энергии, что любая система быстрее или медленнее развивается или деградирует. В вечности понятия «быстро» и «медленно» смысла не имеют, поэтому, строго говоря, существуют только открытые системы, близкие к равновесию, условно названные открытыми равновесными системами. С этой точки зрения изолированные и закрытые системы — заведомо упрощённые схемы открытых систем, полезные при приближённом решении частных задач. Открытые системы характеризуются постоянным обменом вещества и энергии с внешней средой. Так, в биологических организмах доминирует подвижное равновесие при постоянном обмене вещества и энергии со средой. Такие открытые системы избегают энтропии через метаболизм и постоянное поступление информации из внешней среды. Все открытые системы характеризуются самостабилизацией и саморегуляцией. Эти системы оказываются способными на поддержание наличного состояния в результате включения процессов контроля. Негативные обратные сигналы противодействуют поступающей информации из среды, элиминируют возмущения и, таким образом, реставрируют желаемое состояние системы. В открытых органических системах способность на динамическую самостабилизацию желаемого состояния называется гомеостазом. Такие системы характеризует плавное равновесие, поскольку абсорбирование возмущений среды приводит не к первоначальному состоянию, а к новому равновесному состоянию. Самоорганизация и морфогенез представляют наиболее общие процессы системных изменений в эволюции открытых систем. В то время как самостабилизация достигается посредством негативных обратных связей, самоорганизация достигается посредством позитивных обратных связей. Развитие системы (морфогенез) предполагает адаптацию первоначального равновесного состояния внешним возмущениям и, соответственно, достижение нового этапа развития. Возмущения среды вызывают усиление механизмов самостабилизации. Новая трактовка второго начала термодинамики была предложена И. Р. Пригожиным. По мысли Пригожина, энтропия — это не просто безостановочное соскальзывание системы к состоянию, лишённому какой бы то ни было организации. Необратимые процессы являются источником порядка. В сильно неравновесных условиях может совершаться переход от беспорядка, хаоса к порядку. Могут возникать новые динамические состояния материи, отражающие взаимодействие данной системы с окружающей средой. Эти новые структуры Пригожин называет диссипативными, поскольку их стабильность покоится на диссипации энергии и вещества. Теории неравновесной динамики и синергетики задают новую парадигму эволюции систем, преодолевающую термодинамический принцип прогрессивного соскальзывания к энтропии. С точки зрения этой новой парадигмы, порядок, равновесие и устойчивость систем достигаются постоянными динамическими неравновесными процессами. В зависимости от реакции на возмущающие воздействия выделяют активные и пассивные системы. Активные системы способны противостоять воздействиям внешней среды и других систем и сами могут воздействовать на них. У пассивных систем это свойство отсутствует. По характеру поведения все системы подразделяются на системы с управлением и без управления. Класс систем с управлением образуют системы, в которых реализуется процесс целеполагания и целеосуществления. Примером систем без управления может служить Солнечная система, в которой траектории движения планет определяются действующими во Вселенной законами гравитации. В прикладных науках, а также в теории и практике управления широко используются классификации систем в зависимости от степени их сложности и организованности. По этим основаниям системы делятся на большие, простые, сложные и организационные. Как правило, когда речь идёт о различных видах систем управления, прежде всего подразумевается именно такое общее их деление. К организационным системам относятся социальные системы — группы, коллективы, сообщества людей, общество в целом (см. Общество). Простыми системами называют системы, состоящие из ограниченного и относительного малого числа элементов с однотипными одноуровневыми связями. Такие системы с достаточной степенью точности могут быть описаны известными математическими соотношениями. Большими системами называют многокомпонентные системы, включающие значительное число элементов с однотипными многоуровневыми связями. Большие системы — это пространственно-распределённые системы высокой степени сложности, в которых подсистемы (их составные части) также относятся к категориям сложных. Дополнительными признаками, характеризующими большую систему, являются:
Сложными системами называют структурно и функционально сложные многокомпонентные системы с большим числом взаимосвязанных и взаимодействующих элементов различного типа и с многочисленными и разнородными связями между ними. Сложные системы отличаются многомерностью, разнородностью структуры, многообразием природы элементов и связей, организационной разносопротивляемостью и разночувствительностью к воздействиям, асимметричностью потенциальных возможностей осуществления функциональных и дисфункциональных изменений. При этом каждый из элементов подобной системы может быть также представлен в виде системы (подсистемы). К сложной можно отнести систему, обладающую по крайней мере одним из следующих признаков:
В кибернетике мера сложности связывается с понятием разнообразия. В частности, из принципа разнообразия следует, что анализ систем (процессов, ситуаций), обладающих определённым разнообразием, возможен лишь с использованием управляющих систем, способных порождать, по крайней мере, не меньшее разнообразие. Важной особенностью сложных систем, особенно живых, технических и социальных, является передача в них информации, что обусловливает существенные взаимосвязи их свойств. Поэтому значительную роль в функционировании таких систем играют процессы управления. К наиболее сложным видам подобных систем относятся целенаправленные системы, поведение которых подчинено достижению определённых целей, и самоорганизующиеся системы, способные в процессе функционирования видоизменять свою структуру. При этом для многих сложных систем характерно наличие разных по уровню, часто не согласующихся между собой целей. Системы, содержащие активные элементы (подсистемы), то есть такие элементы, которые имеют возможность самостоятельно принимать решения относительно своего состояния, называются организационными системами (организациями). В организационных системах свойством целеустремлённости обладает как вся система, так и отдельные её элементы. Этим организация отличается от системы, называемой организмом. Между отдельными элементами (органами) организма существует разделение системных функций, но только организм в целом может быть целеустремлённым. |
|
Библиография |
|
---|---|
Издания на русском языке: |
|
|
|
Издания на других языках: |
|
|
|