Всякая система управления состоит из трёх основных частей: входного устройства, выходного устройства и сети связи, которая соединяет их. Эта сеть в самом общем случае является анастомотик ретикулум. Теперь попытаемся найти численное выражение, количественно характеризующее такую систему. Многое можно сказать о масштабах проблемы исходя из уже перечисленных первых принципов. Прежде всего должен быть организован вход, начиная с набора рецепторов, которые передают информацию о некоторых аспектах состояния внешнего мира в эффективно действующие каналы, и заканчивая сенсорным регистратором (или сенсориумом), в котором эта информация собирается. Принципиально такое сенсорное устройство можно встретить везде, как в живых, так Совершенно очевидно, что способности различать детали на каждом конце входного устройства (рецептора и сенсориума) должны быть равными для обеспечения эффективной работы системы. Так, если сенсориум обладает большей возможностью различать детали, чем рецептор, то эта его способность будет потеряна, поскольку приниматься будет лишь часть сигналов, генерируемых передающим устройством. Если же, наоборот, рецептор будет более мощным в смысле различения деталей и эта детальная информация будет передана сенсориуму с худшей разрешающей способностью, то некоторые детали будут просто утрачены. Другое очевидное заключение сводится к тому, что пропускная способность любых каналов, используемых для передачи информации между рецепторами и сенсориумом, должна быть достаточной, чтобы передать её всю. Это особенно ясно, когда передающий канал — механический. Возьмём, к примеру, в качестве входного устройства системы пишущую машинку. (Её можно рассматривать в качестве самостоятельной системы, поскольку то, что считается системой, определяется исследователем, и он определяет её границы исходя из своих целей.) Клавиши пишущей машинки представляют собой рецепторы с разрешающей способностью, скажем, 92 различных символа. Тогда у нас будет 46 клавиш и устройство, позволяющее работать на двух регистрах. Клавиши сделаны для того, чтобы машинистка могла ввести текст в систему, которая собирает его на сенсориуме — бумаге. Если у нас 46 клавиш, то должно быть 46 рычагов, способных донести металлические символы до бумаги, и устройство для переключения регистра, выступающее в виде своеобразного усилителя, поскольку с его помощью удваивается число символов (сколько бы их ни было), представленное числом клавиш. Важно также, чтобы канал передачи обладал соответствующей ёмкостью не только в смысле способности различать сигналы, Но то, что справедливо в отношении входа, справедливо Третья часть системы управления — анастомотик ретикулум, который соединяет сенсоры с моторной платой, о нём нам ещё предстоит поговорить подробнее. А сейчас попытаемся оценить масштаб проблемы, перед которой стоит система управления любой сложной организацией, такой как человек или промышленная фирма в смысле требований к её входным и выходным параметрам. И уж поскольку эти части системы вновь упомянуты, вместе, отметим один любопытный факт. Мы говорили о способности частей системы управления различать детали. На стороне входа необходима пропускная способность, равная числу рецепторов на сенсорной плате; на стороне выхода та же разрешающая способность должна быть на моторной плате с её эффекторами действия. Рассматривая систему управления в целом, мы видим, что необходимые мощности на входе и выходе должны быть равными. Основания для этого всё те же, если мы В кибернетике число различаемых объектов (или различаемых состояний того же объекта) называется «разнообразием». Тогда, подводя итог вышесказанному, можно считать, что разнообразие на входе должно (по крайней мере) соответствовать разнообразию на выходе для системы в целом, но для входного и выходного устройства оно решается самостоятельно. Это существенно важное следствие закона Эшби о разнообразии систем, которое гласит, что управление может быть обеспечено только в том случае, если разнообразие средств управляющего (в данном случае всей системы управления) по крайней мере не меньше, чем разнообразие управляемой им ситуации. Этот закон, как и любой другой важный закон природы, совершенно очевиден после того, как он открыт. Нетрудно, однако, обнаружить примеры систем управления, поведение которых в значительной степени не соответствует этому закону и, следовательно, неудовлетворительных. Начиная с управления уличным движением и заканчивая национальной экономикой — ошибки очевидны, и, конечно, это одна из ключевых проблем управления промышленным предприятием. Руководители всегда надеются создать простую и дешёвую систему управления, но часто заканчивают потерей крупных денежных сумм на то, чтобы обеспечить с запозданием требуемое разнообразие, которое должно было бы создаваться прежде всего. Важно определить меру разнообразия промышленного предприятия. Чтобы понять в чём тут дело, мы постепенно подойдём к пониманию того, как растёт разнообразие и каким путём оно может быть воспринято, то есть к тому, что собственно и есть управление. Рассмотрим для начала проблему чтения через её основную составляющую — распознавание букв. Мы хотим получить возможность различать 26 букв английского алфавита, оставляя в стороне такие сложности, как строчные и прописные, тип шрифта, и так далее. Представим тогда себе 26 различных карточек, на каждой из которых напечатана одна буква алфавита, и создадим рецептор, который их рассматривает по отдельности. Пусть единичный визуальный рецептор представляет собой простое устройство, отличающее светлое от тёмного. Им может быть, например, фотоэлемент, который можно отрегулировать так, чтобы он «чувствовал» границу между светлым и тёмным. Фотоэлемент, таким образом, будет обладать двумя состояниями, которые мы назовём Однако если у нас есть только один первичный рецептор, то мы можем проделать с ним трюк другого сорта. Можно разделить весь набор карточек с буквами на две части так, чтобы в одной половине оказались более светлые, Преимущество всего этого в том, что здесь один рецептор с разнообразием два (а именно, 0 или 1) способен уменьшить, в два раза размерность решения проблемы соотнесения любой из 26 букв. Мы, таким образом, получили 13 разнообразных вариантов за счёт двух. Может показаться, что пользы в этом мало, однако это весьма важно. Вообще, двоичный классификатор (рецептор 0 или 1) при эффективном использовании в два раза уменьшает неопределённость, с которой он встретился. Все проблемы, относятся ли они к распознаванию, классификации или к самому решению, — проблемы неопределённости. Если нет неопределённости в отношении промышленной ситуации, то руководителю не нужно принимать решения. Если нет неопределённости в начертании буквы, то мы можем её прочесть. Ситуациями с большей неопределённостью трудно управлять именно потому, что мера их разнообразия и есть мера их неопределённости. Именно поэтому так важен трюк, который мы только что продемонстрировали. Как бы ни была велика проблема, её разнообразие, в принципе, может быть уменьшено в два раза с помощью одного решающего элемента. Приведём другой пример. Вы ищете кого-либо в танцевальном зале, где танцуют 500 пар. Разнообразие тогда составляет 1000; фактор неопределённости составляет 1:1000, а вероятность правильного решения при случайной выборке равна 0,001. Таков масштаб проблемы. Но если вы знаете, ищете вы мужчину или женщину, то масштаб проблемы сразу уменьшается в два раза. Вернёмся теперь к проблеме чтения всего алфавита. Мы показали, что 13 более светлых букв могут отличаться от 13 более тёмных букв с помощью одного избирательного рецептора, способного определять среднюю границу их серости. Взяв теперь пачку карточек из 13 букв и второй рецептор, получим возможность отделить 6 одних букв от 7 других, используя такое же устройство — фотоэлемент, порог чувствительности которого соответствовал бы середине между самыми тёмными и самыми светлыми буквами. Конечно, такой же рецептор можно использовать для сортировки и второй пачки букв, когда до них дойдёт очередь. Для сортировки шести (или семи) карточек используем третий рецептор, который сведёт проблему к двум новым половинам (из 3 или 4 карточек). С помощью четвёртого рецептора мы сможем разобраться Таким образом, в принципе необходимо только 5 рецепторов, чтобы прочесть буквы английского алфавита, поскольку их достаточно, чтобы различать Мы можем начать обсуждение проблемы снижения разнообразия с другого конца. Сканирующая система телевидения располагает сотнями линий, и сотни разной яркости чёрных и белых точек передаются по каждой линии. В конечном счёте для создания картинки на экране трубки должны использоваться десятки тысяч двоичных рецепторов. Подобно этому в каждом человеческом глазу содержится около миллиона двоичных рецепторов. Неудивительно тогда, что глаз или телевизионная трубка может различать 26 букв алфавита, поскольку, как было показано, для этого достаточно и пяти рецепторов. Из этого вытекает важное заключение: используя значительно большее число рецепторов, чем теоретически необходимо, мы фактически можем разобраться с невероятно большим числом неточностей на входе. Это аналогично нашему примеру о необходимости в двух посыльных для передачи единственного сообщения, хотя на этот раз речь идёт о рецепторах, а не о каналах связи. Благодаря этому люди смотрят телевизионные передачи сравнительно спокойно и, конечно, с пониманием происходящего, когда изображение сильно искажено электрическими помехами. Аналогично и глаз спокойно читает исключительно плохой почерк. Так происходит потому, что у глаза достаточно рецепторов, чтобы различать миллионы букв, а не каких-нибудь 26, но если учесть все возможные алфавиты, включая буквы, написанные от руки, то, вероятно, и нам необходимо большинство этих рецепторов. Разница между «да» и «нет», между Этот процесс будет продолжаться как успешное разделение спектра возможных решений на все новые половины, пока в один прекрасный день руководителю представится возможность сказать «да» или «нет» относительно заключительного предложения. Можно математически показать, что наиболее эффективный путь преодоления последовательности решений такого рода заключается в том, чтобы разделять возможности на две части, причём совершенно не важно, равны ли эти части. Можно, конечно, использовать дополнительный рецептор (что предполагает принятие дополнительного решения) сверх тех, которые минимально необходимы, но это не меняет общего порядка процедуры. В компьютерах, как всё прекрасно знают, любые сообщения записываются нулями и единицами, в нашем теле нервная клетка либо возбуждена для передачи импульсов, либо нет. В естественных системах, таких как только что упомянутая социальная система управления или такая, как наше живое тело, граница между Большинство систем управления, которые интересуют кибернетиков, представляют собой смесь систем аналогового и дискретного счёта. Важность этого утверждения в том, что в любом из этих случаев Такова таким образом природа фундаментального механизма, позволяющего нам как жителям этого мира или как руководителям предприятий справляться с огромным разнообразием, встречающимся в жизни. Мы можем распознать или выбрать, или принять решение на основе триллиона вариантов, используя только 40 хорошо продуманных рецепторов или классификаторов. Даже если мы неэффективно разрабатываем свою систему, планируем её процедуры, результат весьма впечатляет. Мы также открыли меру, которую уместно использовать, размышляя о проблемах управления и при разработке инструментов управления. Тогда что же произойдёт с законом о требуемом разнообразии? Ответ таков: мы можем создать генератор разнообразия в механизме управления, подобный тому, которым располагает природа для роста разнообразия как средства преодоления проблем управления. Пока всё хорошо, но теперь природа берёт свой реванш. Если мы, управляющие, можем создавать очень большие множества из небольшого числа элементов, то, то же может делать и природа. Посмотрите: мы заявляем, что нам необходимо 5 рецепторов для чтения 26 букв латинского алфавита. Представим себе тогда пять лампочек, которые могут зажигаться в любом порядке. (Первая горит, остальные выключены, две горят, три не горят и так далее) Тот факт, что 5 рецепторов могут различать 26 букв, означает, что эти 5 лампочек могут создавать 32 комбинации, и, конечно, если мы хотим представить себе, что означает наше окружение, то должны понимать то, чем оно располагает. Тогда если ваш внешний мир располагает всего 40 лампочками, то из предыдущего мы знаем, что можем встретиться с триллионом разных состояний. Верно, что нам, чтобы разобраться в них, необходимо всего 40 информационных попыток — ситуация совершенно симметричная. Но мир состоит не из сорока лампочек, а из миллиардов вещей и событий. Если вас фактически интересует n вещей и событий, каждое из которых в данный момент либо «вспыхнуло», либо нет, то такой мир предстаёт перед нами в одном из 2n возможных состояний n вещей. Поняв, сколь стремительно нарастает такая функция, начинаешь осознавать, что создаётся весьма незавидная перспектива. Но если мы хорошо умеем создавать управляющие механизмы, то такая перспектива нас не очень пугает, поскольку это означает, что необходимо такое число рецепторов, сколько насчитывается событий или вещей. Эти n рецепторов создадут 2n разнообразий на сенсориуме. Моторная система сведёт 2n состояний к возможным конкретным действиям. Мы, таким образом, сохранили требуемое разнообразие. Однако вспомним приведённый ранее аргумент: если вещей или событий больше, чем рецепторов, которые их распознают и сообщают о них системе управления, то мы не можем все их определить. И здесь мы вновь сталкиваемся с законом о требуемом разнообразии. В любой данный момент нас будет касаться лишь то, о чём мы знаем, и не больше, а его разнообразие равно n. Разнообразие n создаёт 2n состояний, но наши процедуры выбора позволяют нам с этим справиться с помощью n процедур распознавания или n процедур выбора, то есть именно с тем их числом, которым мы располагали по определению. Но беда начинается, когда необходимо предпринимать Мы уже упоминали, что входные и выходные устройства симметричны и подчиняются закону о требуемом разнообразии. Это требование в равной мере распространяется как на входы, так и на выходы устройства. Реальная проблема управления, которую необходимо решать мозгу, сводится к проблеме сопоставления положения на входе с положением на выходе, с помощью анастомотик ретикулума. Если разнообразие возникающей перед нами ситуации равно n, то разнообразие на сенсориуме равно 2n. А если по закону о требуемом разнообразии необходимое число действий составляет n, то разнообразие на моторной плате будет также 2n. Каково же тогда разнообразие внутри сети, соединяющей сенсорную и моторную платы? Оно равно числу возможных комбинаций 2n из 2n, то есть (2n)2.n. Это утверждение проясняет Рис.
Если до этого мы рассуждали спокойно, то теперь пришло время поднять настоящую тревогу. Дело в том, что числа такого вида немыслимо велики. Следует понимать, как это получается. Уже объяснялось, почему n разнообразий создают 2n состояний на сенсориуме. Объяснение достигалось по мере демонстрации того, как с целью поиска решения разнообразие разделялось пополам. Каждый доступный нам вариант выбора удваивает разнообразие. Начав с единственной возможности, мы позволяем создавать альтернативу: 0 или 1. При повторении этой процедуры 0 создаёт снова либо 0, либо 1, а единица — тоже 0 или 1 и так далее. Рассмотрим чёрный ящик всего с двумя входными и двумя выходными величинами. На обеих его сторонах — сенсорной и моторной — при n=2 генерируется 2n = Как может показаться, в это трудно поверить, поскольку мы начали всего с двух двоичных входных и двух двоичных выходных величин. Но рассмотрим одно из четырёх возможных выходных состояний, скажем 00. Оно может быть, а может и не быть зарегистрировано как одно из четырёх выходных состояний. Обозначим одно из несостоявшихся соединений 0, а действующее 1. Следующая таблица демонстрирует возможные состояния системы:
В этой системе вполне различимы 16 состояний, хотя рассматривалось лишь одно выходное состояние. Однако мы располагаем четырьмя выходными состояниями, в равной мере способными вызывать шестнадцать других состояний внутри системы. Общее взаимодействие входных и выходных состояний даёт общее разнообразие системы Почему же нам пришлось так подробно в этом разбираться и почему мы заговорили об этом с тревогой? Ответ состоит в том, что любая система управления генерирует столь большое разнообразие, используя этот механизм, что буквально нет никакой возможности его проанализировать и, следовательно, нет способа (как кажется). соединения анастомотик ретикулума. «Буквально» здесь сказано точно — задача кажется научно неразрешимой, не говоря уже о её бесконечно большой размерности. Если это так, то не следует и надеяться, что в один прекрасный день появятся достаточно мощные и быстродействующие компьютеры, позволяющие решать задачи, которые решить нельзя. Факты надо признавать, они таковы. Рассмотрим наименьший «мозг», которым стоило бы располагать, чтобы справиться с управлением сложной ситуацией в реальной жизни любой фирмы. Окружающая её среда характеризуется числом разнообразия её состояний, не так ли? Если представить себя или нашу фирму в окружающей среде с разнообразием, равным Следующий довод, которому мы обязаны Бремерманну, вытекает из физики. Как следует из квантовой механики, есть нижний предел точности, с которой может быть измерена энергия. Это означает наличие постоянной и предельной степени неопределённости материи. Согласно принципу Гейзенберга любая попытка улучшить точность измерения приводит к тому, что погоня за точностью изменяет состояние вещества. Количества здесь малы, но они сильно сказываются на свойствах вещества. Бремерманн приложил этот принцип к 1 г вещества в Такое число выглядит огромным, и действительно мы приступаем к определению мощности растущего с огромной скоростью числа 2n, где n представляет собой Теперь ясно, почему я выбрал разнообразие Состояние фирменной среды, как и состояние всего человеческого организма, располагает разнообразием, значительно превышающим 300. Даже при самой ориентировочной оценке (исходя из того, что разнообразие на моторной плате должно быть равным на сенсорной) разнообразие живого мозга составит примерно (2106)2107, что с полным основанием считается самым большим числом среди серьёзно обоснованных чисел. Если мы хотим действительно разобраться с разнообразием состояний фирмы, то, конечно, у нас нет никаких оснований полагать, что мозг фирмы нуждается в возможности справляться с разнообразием, меньшим, чем это. Мозг Фирмы, как и мозг человека, потенциально может быть в стольких состояниях, что их никогда не удастся проанализировать или исследовать с учётом всех факторов — их немыслимо большое число. Информация должна тогда выдаваться постоянно миллиардами битов и серьёзно контролироваться. Здесь уместно отметить и особо подчеркнуть, что не может и возникать вопроса о нахождении абсолютного оптимума поведения как для человека, так и для фирмы, поскольку нельзя проверить все альтернативы. Из законов природы следует, что это невозможно в принципе. Отсюда сам по себе анастомотик ретикулум бесполезен. Нужно Полное управление растущим разнообразием совершенно невозможно для человеческого ума или мозга фирмы. Однако как человек, так и фирма фактически работают. Для этого они уменьшают, они должны уменьшать разнообразие их бесчисленных состояний. Для этого мало веры в электронный компьютер. Вопрос в том, как такие системы спокойно и эффективно справляются с подобной задачей? Ответ таков: путём организации. | ||||
Оглавление | ||||
---|---|---|---|---|
| ||||