«Мир вне нас» и «Мир внутри нас»На основе конфигураций энергетических воздействий, которые возбуждают некоторые из наших рецепторов, мы способны отражать «мир вне нас». Зрительные, и слуховые раздражители мы рассматриваем как дистантные по отношению к рецепторам, которые они возбуждают. Прикосновение, вкус, запах обычно не обладают таким свойством дистантности, они локализуются на поверхности рецептора и, таким образом, устанавливают для нас границу между тем, что находится вовне и внутри нас. Однако даже в случае этих рецепторных модальностей мы ощущаем, что к нам прикасаются, имеют вкус или запах внешние объекты, то есть нечто отличное от наших собственных рецепторных реакций. Но существует иной мир, «мир внутри нас», мир субъективных переживаний. В отличие от восприятий субъективные переживания являются таким феноменом, который мы непосредственно приписываем тому, что находится внутри нашего организма, внутри той оболочки, которая отделяет «нас» от «других». Мы ощущаем голод или сонливость или сексуальное возбуждение; мы испытываем боль, счастье или печаль; мы переживаем состояние нерешительности или самоуверенности. Достаточно ли отличаются эти процессы, которые порождает наш внутренний мир, от уже рассмотренных нами, чтобы оправдать картезианский дуализм, на протяжении трёх столетий разделяющий исследователей на гуманитариев и естествоиспытателей? Ответ на этот вопрос не содержит ничего сенсационного. Он основан на том очевидном факте, что наши представления о внешнем мире могут быть объяснены на языке нейронных процессов, которые создают в нервной системе его проекцию, а также на знании того, что мы строим «мир внутри нас», привлекая для зтого другой набор нейронных процессов, хотя и не совершенно отличный по составу. Клинический нейрологический опыт свидетельствует о том, что локализация перцептивного образа не является простым процессом. Парадоксальный феномен фантомной конечности после её ампутации, например, делает маловероятным предположение, что источник наших ощущений, возникающих в результате стимуляции рецептора, «находится» там, где мы способны их локализовать. Больной, который просит сиделку помассировать пальцы ног, потому что они сведены судорогой, ещё не ощущает и может никогда не ощутить потерю конечности даже в том случае, если сиделка невольно сообщит ему, что его нога в специальной посуде отправлена в патологоанатомическую лабораторию. Образы формирует мозг, но почему же мы локализуем предметы именно так, а не иначе? Чтобы ответить на этот вопрос, Бекеши провёл несколько важных экспериментов. Используя прикосновение, которое обычно не ощущается как дистантное, он создал условия, при которых оно оценивалось как «дистантное».
Такое же положение характерно для слуха. Ощущения вызываются воздействием стимула на базилярную мембрану кохлеарного органа. Кох-леарный орган находится в глубине кости, но мы не локализуем слуховые ощущения там, а обычно относим их к источнику, находящемуся Вероятно, это умение проецировать ощущения вовне приобретается очень рано, что одинаково справедливо для зрения и слуха. Но мы не обладаем способностью подобного внешнего проецирования кожных ощущений и поэтому имеем возможность раскрыть, каким образом происходит обучение проецированию стимула в пространстве. Для того чтобы это исследовать, была использована пара вибраторов, раздражающая кончики двух пальцев (см. Рис. IX–1)… Каждый вибратор приводился в действие одними и теми же сериями щелчков. Чтобы получить равную интенсивность ощущений для каждого пальца при раздельном предъявлении раздражителей, прикладываемый к вибраторам ток варьировался. Это устройство позволяло также изменять интервал между щелчками двух серий. Если щелчок для одного пальца запаздывал более, чем на 3 или 4 мсек, испытуемый, как уже говорилось, испытывал два различных ощущения от двух кончиков пальцев. Если же интервал между щелчками сокращался примерно до 1 мсек, то две серии щелчков сливались в одну и ощущение вибрации локализовалось в том пальце, который стимулировался раньше, чем другой. Если ещё уменьшить интервал, то у тренированного наблюдателя ощущение будет локализоваться Интересным в этом эксперименте является то, что при отсутствии интервала вибрации локализуются Ещё более важным, чем этот, является эксперимент, в котором два вибратора помещались на бедрах чуть выше колен. В таком положении вибраторы могут раздражать большую поверхность кожи и вызывать сильные ощущения вибрации. В результате тренировки, при которой субъект должен был локализовать вибрации при сдвинутых коленях, испытуемый может научиться получать ощущение, которое непрерывно движется от одного колена к другому. Если теперь испытуемый раздвинет колени, то вначале он снова испытает скачок ощущения ог одного колена к другому. Однако со временем он сможет убедиться, что ощущение вибрации, может быть локализовано в свободном пространстве между коленями, Вибраторы и будет способен испытывать перемещение этого ощущения в свободном пространстве при соответствующем интервале между двумя стимулами. Этот эксперимент очень необычен. Такой способ внешнего проецирования ощущения вибрации кажется странным, и в него трудно поверить, однако он хорошо известен во многих областях. Каждый опытный слесарь проецирует своё ощущение от давления на вершину отвертки, и именно эта проекция позволяет ему работать быстро и точно. Для большинства людей такое проецирование столь обычно, что они не осознают его своеобразия. Такой тип проецирования возникает при резании ножом. При установке лезвия ножа мы пользуемся ощущениями, которые проецируются на его острие. Я считаю, что локализация ощущений в свободном пространстве — очень важная черта поведения. В целях дальнейшего изучения этого вопроса я носил два слуховых аппарата, настроенных таким образом, что звуки могли улавливаться с помощью двух микрофонов, расположенных и» груди, и затем передаваться к двум наушникам без изменения амплитуды звукового давления (см. Рис. IX–2). Стереофоническое прослушивание осуществлялось хорошо, но восприятие расстояния до источника звука было утрачено. Я не забуду тот страх, который испытал при попытке перейти улицу в час «пик» в то время, когда я носил эту систему звуковой передачи. Казалось, что все машины возникали в моём сознании внезапно, и я был не способен уточнить их место и порядок их появления. Вероятно, мне потребовалось бы несколько недель для тренировки, чтобы приспособиться к этому новому типу проецирования. Небольшого одностороннего изменения в усилении звука было достаточно, чтобы аннулировать всю ранее приобретённую систему приспособления (Bekesy, 1967, р. 220–226).
Результаты этих экспериментов не являются, конечно, полным ответом на вопрос, каким образом организм обеспечивает восприятие внешнего мира. Расчёт константности и конвергентных серий преобразований также допускает экстраполяции на основе текущего возбуждения рецепторов; другие факторы, такие, как параллакс и микроструктура зрения, также способствуют процессу конструирования «мира вне нас». Но наблюдения Бекеши в значительной мере облегчают понимание этой до сих пор не разгаданной загадки. Они также говорят о том значении, которое имеет для выживания наличие двух расположенных на противоположных сторонах тела симметричных рецепторов, — очевидно здесь дело именно в этом, а не в существовании в нервной системе запасных частей для выполнения одних и тех же функций.
Представьте себе на мгновение, что мы лишены всех этих механизмов, конструирующих для нас «мир вне нас». Попытайтесь, например, повернуться вокруг себя с закрытыми глазами и пробками в ушах. Как и в эксперименте Бекеши со слуховым аппаратом, жизнь внезапно становится более интимной, и мы оказываемся в нашем ограниченном мире, «мире внутри нас». Ощущение как контролирующий образВ этой главе мы не будем больше рассматривать такие ощущения, как осязание и вкус, происхождение которых связывается с рецепторными поверхностями. Механизм формирования образов в этих модальностях, вероятно, мало чем отличается от уже рассмотренного механизма зрения. Предметом данной главы является, скорее, «мир внутри нас», как таковой: ощущение голода и жажды, чувство любви и удовольствия, дискомфорта и тревоги. Результаты большого числа экспериментов и наблюдений показывают, что эти чувства возникают в результате возбуждения рецепторов, лежащих в глубине ствола мозга, рецепторов, механизмы которых в одних отношениях сходны, а в других весьма отличны от механизмов, порождающих перцептивные образы. Для ощущений, «контролирующих» «мир внутри нас», как и других форм построения образа, характерно то, что форма, в которой они возникают, представляет собой то или другое устойчивое состояние, вызываемое в нейронных системах рецепторным возбуждением. Основное требование, выраженное в этих главах, состоит в том, чтобы рассматривать эти устойчивые состояния как динамические структуры потенциалов соединений. В случае «контролирующих ощущений» явления, происходящие в рецепторах и регулирующие эти динамические структуры, обладают иной конфигурацией, чем те, которые управляют перцептивными образами. Кроме того, организации нейронных систем, в которых возникают эти два типа образов, различны: ощущения, «контролирующие» ‹‹мир внутри нас», создаются нейронными системами со множественными внутренними связями, многие из них характеризуются обширным числом нейронов с короткими, сильно разветвлёнными тонкими волокнами. Можно предположить, что микроструктура медленных потенциалов в такой организации значительно отличается от той, которая возникает в слое горизонтально связанных клеток, рассекаемом параллельными линиями нервных волокон, проводящих информацию. Сейчас мы мало знаем о результатах тормозных взаимодействий, которые имеют место в таких сетях; нейрофизиология совершенно игнорировала эту область исследования. Но уже одни анатомические соображения исключают чёткое разделение процессов затухания и латерального торможения, что так характерно для сенсорных (и моторных) каналов. Исходя из этих анатомических соображений, мы можем высказать предположение, что затухание и тормозные взаимодействия здесь сочетаются в устройстве, которое управляет системой, несколько напоминающей гироскоп, но это предположение ещё нуждается в проверке на нейронном уровне. Вместо ориентировочного рефлекса, привыкания и растормаживания следует различать «контроль» флуктуации возбудимости с её тенденцией восстанавливать среднюю величину. Более того, большое число синаптических контактов, приходящихся на единицу объёма, в этих нейронных системах делает последние особенно чувствительными к химическим веществам, содержащимся в окружающей ткани и кровяном русле, и, таким образом, делает их кандидатами на роль рецепторов, участвующих в контролировании локальной концентрации нейрогормонов. Рецепторы ствола мозгаСто лет назад Клод Бернар (1865) положил начало новой ветви нейрофизиологии, связанной с изучением регуляции метаболизма и эндокринных функций организма со стороны нервной системы. Эти знаменитые теперь «острые опыты», в которых диабет вызывался уколами в ствол мозга, привели к множеству других экспериментов, в которых нарушения вегетативных функций тела и внутренней среды были следствием небольших повреждений в стволе мозга или его локальной электрической стимуляции (см. Рис. IX–3).
Так, наблюдались изменения температуры тела, осмотического давления тканевой жидкости, функции гипофиза и других эндокринных желез, а также изменения уровня сахара в крови. Когда постепенно была изучена организация этих нейронных систем, стало очевидным, что группы клеток в стволе мозга действуют как рецепторные зоны в отношении субстанций или переменных, которые они контролируют. Так было обнаружено, что инъекции гипертонического раствора соли в третий желудочек вызывает у козы обильное поглощение воды (Andersson, 1953). Тепло, приложенное к основанию переднего края третьего желудочка, сразу же ведёт к изменению в механизмах терморегуляции всего тела млекопитающего (Ranson, Fisher and Ingram, 1937); инъекции андрогенов и эстрогенов, меченных радиоактивными молекулами, непосредственно позади этой области сопровождаются различным их поглощением клетками мозга, стимуляция которых вызывает половое поведение (Michael, 1962; Davidson, Jones and Levine, 1968; см. также Pис. IX–4); сходным образом меченые молекулы глюкозы максимально усваиваются труппой клеток, расположенных ещё дальше назад и контролирующих процесс поглощения пищи (см. Главу X; Mayer, 1963), а локальные изменения в парциальном давлении СО 2 в задней части ствола мозга вызывают резкие изменения частоты и глубины дыхания (Meyer, 1957). Все эти виды чувствительности локализованы в структурах, которые расположены в стволе мозга, довольно близко к желудочкам средней линии (третьему и четвёртому).
Тот факт, что эта часть мозга содержит рецепторы, не должен казаться столь удивительным. В ходе эмбриогенеза эта часть центральной нервной системы, расположенная по средней линии, развивается из наружного зародышевого листка, из которого формируется вся центральная нервная система Эта ткань имеет такое же происхождение, как и кожа: гребешок экто дерма льных клеток на спине эмбриона складывается таким образом, что образует трубку, полость которой позднее будет заполнена цереброспинальной жидкостью (см. Рис. IX–5). В головном конце эмбриона эта полость становится системой желудочков мозга. Следовательно, стенки полости, перивентрикулярные клетки сродни эктодерме, из которой образуется кожа и некоторые более специализированные рецепторы, такие, как сетчатка. Таким образом, чувствительность перивентрикулярных структур сходна с чувствительностью кожи; температурные изменения, деформация, изменения водного обмена — некоторые из главных категорий стимулов, к которым дувствительны и перивентрикулярные структуры и кожа. Об этой чувствительности перивентрикулярной части мозга мне стало известно в результате одного драматического происшествия. Одной из особенностей мозговой ткани является то, что она почти в любом месте нечувствительна к механическим воздействиям. Поэтому операция на мозге в большинстве случаев делается под местной анестезией, чтобы уберечь пациента от большой травмы и от риска, связанного с общей анестезией. В одной из таких операций мы исследовали область четвёртого желудочка и, как обычно при нейрохирургической операции, сохраняли мозг влажным с помощью жидкости, капавшей на его обнажённые части. Раствор, который обычно используется, имитирует концентрацию и химический состав цереброспинальной жидкости; в данном случае неопытная медицинская сестра случайно заменила его дистиллированной водой. В тот момент, когда вода достигла желудочка, пациент испытал резкую боль в голове, тошноту, позывы к рвоте и рвоту. Такие же сильные реакции вызывались лёгким вдавливанием или вытягиванием стенки желудочка или использованием жидкости, которая была холоднее или теплее температуры тела.
Таким образом, мы можем сделать вывод, что сотни нейрофизиологических экспериментов показывают, что по средней линии ствола мозга близко к системе желудочков расположены группы специализированных «контролирующих» рецепторов. Эти специализированные рецепторы являются классическими центрами контроля дыхания, насыщения и так далее, то есть всего того, что интересует психологов и биохимиков, изучающих регуляцию метаболизма и эндокринных функций организма со стороны нервной системы. Эти рецепторы функционируют как чувствительные к «состоянию» организма элементы класса сервомеханизмов, названных Кенноном (1929) «гомеостатами», которые имеют отношение к регуляции функций, включающих подготовительный и завершающий этапы. Теперь мы перейдём к рассмотрению некоторых других компонентов гомеостатов. Коррекция гомеостатических механизмовНепосредственно за пределами перивентрикулярных рецепторов находится сплетение нервных волокон. В него в виде пятен вкраплены группы нервных клеток, и его пересекают длинные нервные волокна. Анатомия ретикулярной формации среднего-мозга была детально рассмотрена А. Бродалем (1958) и Шейбелами (1958); её физиология подробно обсуждалась Джаспером (1958) и Мэгуном (1965). Однако часто упускается из виду тот факт, что организация, подобная той, которая была найдена в среднем мозге, тянется далеко вперёд от него в передний мозг вдоль желудочков средней линии. Таким образом, части гипоталамуса и таламуса, расположенные по средней линии, и даже область перегородки, обладают такими же свойствами, как ретикулярная формация среднего мозга. В конечном счёте разделение мозга на задний, средний и передний весьма условно. Столь же возможной, а для проблемы гомеостатических регуляций даже более важной является классификация, согласно которой мозг делится на пласты в направлении от внутренней части к наружной, аналогично пластам в удлинённой луковице. Характерно, что ткань ствола мозга состоит из нейронов с весьма короткими и тонкими волокнами, которые имеют обширные дендритные сети (см. Рис. IX–6).
На каждой нервной клетке сходятся многие ответвления от классических длинных проекционных путей, берущих начало от различных сенсорных рецепторов организма. Как было показано в экспериментах с регистрацией нейронной активности посредством микроэлектродов, каждый нервный элемент системы находится под влиянием многих сенсорных модальностей (см. Рис. IX–7). Кроме того, существуют реципрокные отношения между глубокими структурами мозга и остальной частью нервного сгвола; например, кора головного мозга активируется при электрическом раздражении глубоких отделов мозга, и, наоборот, стимуляция коры изменяет активность ретикулярных систем. Такая конвергенция сенсорных влияний, а также диффузный характер взаимодействия говорят о том, что наиболее вероятной функцией этих систем является регуляция общего состояния возбудимости нервной системы. Это предположение подтверждается данными о том, что электрическая стимуляция систем глубоких отделов мозга вызывает активацию и дезактивацию ритмов коры, а также тем, что была обнаружена связь разрушения и стимуляции этих систем с такими психологическими процессами, как цикл сон — бодрствование и тревога. Более того, анатомическая структура этих систем свидетельствует о том, что механизмы градуального ответа, характеризующие микроструктуру медленных потенциалов, доминируют в них над механизмами проведения сигналов. Они обильно насыщены синапсами и дендритами, включают в основном короткие и тонкие волокна, поэтому скорость проведения импульса в них невелика, а его амплитуда мала. Как было отмечено в первой части книги, микроструктура медленных потенциалов особенно чувствительна к изменениям в химической среде. Как мы вскоре увидим, большое число работ посвящено изучению действия нервных трансмиттеров и психофармакологических веществ на функции этих систем. Но сначала рассмотрим, какое значение имеет ретикулярная формация
Внутри мозгового ствола расположен ряд систем, которые играют особую роль в регуляции гомеостатического механизма. История этого важного открытия даст нам некоторое представление о том, как Двое исследователей Университета Мак-Гилла, Дж. Олдс и П. Милнер (1954), готовились провести электрическую стимуляцию ретикулярной формации ствола ’мозга крыс во время обучения этих животных решению задач. С помощью стереотаксического прибора исследователи вживили электроды в те зоны мозга крыс, которые, по их мнению, были наиболее подходящими для опыта. В предварительных опытах, изучая поведение крыс, исследователи заметили, что при включении электрического импульса крыса всякий раз убегает в определённое место. Это озадачило и заинтересовало исследователей. После многократного наблюдения такого эффекта им захотелось автоматизировать методику с тем, чтобы на досуге подробно изучить это «принудительное повторение». Они изменили ситуацию таким образом, что крыса могла обнаружить педаль в углу, нажатие на которую включало импульс тока, раздражающего мозг. Крыса быстро научилась находить педаль и нажимать на неё. Таким образом появилась на свет методика самораздражения мозга. Затем Олдс с большой тщательностью составил карты участков мозга, от которых мог быть получен этот эффект. Но стереотаксическая техника не дала ожидаемых результатов, — место расположения стимулирующего электрода оказалось далеко впереди от намеченного. Но участок мозга, так случайно найденный — медиальный переднемозговой пучок в области перегородки, — оставался одной из главных зон для получения этого эффекта. Остальная часть системы самораздражения простирается назад от этой зоны и включает,
Было проведено много экспериментов с использованием техники самораздражения, и было дано много толкований этого эффекта, начиная от простых гедонистических утверждений, что открыты «центры удовольствия», до осторожных бихевиористских предположений о подкрепляющих свойствах этого процесса. Моя собственная точка зрения частично основывается на сообщениях, полученных от наблюдений над больными с вживлёнными в эти участки мозга электродами, а также на анатомических данных и результатах исследования поведения, говорящих о том, что локализации электродов для эффективной самостимуляции и для контроля над таким инстинктивным поведением, как, например, пищевое, по существу, совпадают. Исходя из этих данных, я рассматриваю самораздражение мозга как мгновенное изменение системы регуляции, как такую коррекцию базальных гомеостатических механизмов, в результате которой организм, ощущая временный голод, жажду и тому подобное, затем быстро испытывает мгновенное насыщение только для того, чтобы повторить цикл ещё раз. Специфика ощущений, вызываемых стимуляцией, зависит от рецепторной системы ствола мозга, примыкающей к участку, выбранному для самораздражения, и она приводит к соответствующей деятельности, если для этого имеются возможности (Olds, 1955). Следовательно, процесс самораздражения напоминает регулирующее устройство в домашнем термостате, которое повторно устанавливается и возвращается в исходное положение в комнате, где уже стало тепло. Топка включается лишь на короткое время, чтобы затем снова выключиться, как только показатель на регуляторе достигнет своего исходного значения. Коррекция гомеостатических механизмов с помощью электрической стимуляции не является единственной. Как уже отмечалось, в ряде работ инстинктивное поведение вызывалось также небольшими инъекциями химических веществ. Участки, реагирующие на химическую стимуляцию, и тут совпадали с участками, с которых получали эффект электрического самораздражения. Побочно наблюдавшиеся специфические эффекты зависели от близости стимулируемого участка к той или другой рецепторной системе ствола мозга. Эти эксперименты показывают, что могут быть приведены в действие по крайней мере два различных корригирующих процесса: один из них имеет андренэргическую природу и сконцентрирован главным образом в среднем мозге; а другой — холинэргическую и концентрируется в более передних частях ствола мозга. Нейрохимия сна и настроенияЭффективность воздействия химических веществ на ствол мозга связана с типом нейронов, образующих эту часть центральной нервной системы". Как уже отмечалось, эти нейроны имеют большей частью короткие тонкие волокна, которые обильно ветвятся и таким образом создают контакты со многими соседними клетками. Отличительным признаком связи между нейронами являются медленные потенциалы. Таким образом, любая часть центральной нервной системы, имеющая тонкие, ветвящиеся волокна и обильные контакты между нейронами, будет особенно чувствительна к тем влияниям, на которые реагируют медленные потенциалы. К их числу относятся, конечно, химические влияния — особенно те, что вовлекаются в процесс передачи через контакты между нейронами. Толчком к изучению этих биохимических процессов послужило исследование тех областей мозга, на которые могут эффективно воздействовать психофармакологические средства, а также исследования процессов, ответственных за сон. В стволе мозга было обнаружено два типа адренэргических механизмов (см. Рис. IX–9). Было установлено, что ядра шва особенно чувствительны к серотонину (индоламину), к одному из типов адренэргических передатчиков. Это химическое вещество участвует в механизме «обычного» сна. Другой адренэргической структурой мозга является locus coeruleus. Было обнаружено, что оно особенно чувствительно к норадреналину (катехоламину) и имеет отношение к «парадоксальным» формам сна, во время которых возникает много живых, ярких сновидений. Поэтому при возбуждении участков ствола мозга, содержащих рецепторы сна, накапливающимися в них адренэргическими веществами мы испытываем желание спать. Но так как эта сфера исследований очень активно разрабатывается, наши представления о регулирующей роли накопления этих веществ и особой чувствительности к ним определённых участков мозга продолжают быстро меняться. Пока уточнены только некоторые наиболее общие аспекты нейрохимического контроля сна (Jouvet, 1967).
Ещё менее понятны, но также активно изучаются механизмы чувств, которые мы обычно объединяем под рубрикой «настроение. Результаты исследования снова говорят о том, что участки ствола мозга, содержащие рецепторы, и те же самые химические вещества, (то есть индоламины и катехоламины) ответственны за такие явления, как депрессия и приподнятое настроение (см., например, табл. IX–1 и pис. IX–10). Напротив, агрессивность, Ещё слишком рано было бы говорить о том, сколько основных химических корригирующих механизмов будет найдено и какими могут оказаться их взаимные отношения, а также связь с различными видами настроения и поведения. Во многих лабораториях ведутся поиски специфических химических веществ и чувствительных к ним участков мозга. Эти опыты связаны с открытием эффективных антидепрессантов и транквилизаторов, а сами эти фармакологические вещества оказались ключом к определению типов соответствующих механизмов их действия. РезюмеПри определённых условиях билатеральной симметрии воздей ствия на контакты между нейронами в ответ на рецепторную стимуляцию ощущаются как удалённые от поверхности тела. Сумма таких ощущений образует наш «мир вне нас». Когда эти условия отсутствуют, мы не воспринимаем предметов и явлений. Вместо этого на основе субъективных ощущений мы строим наш «мир внутри нас». Об одном таком классе ощущений, который связан с группой рецепторов, лежащих глубоко в стволе мозга, известно уже многое. Этот класс включает ощущения голода и жажды, сексуальность, изменение бодрствования, сна и настроения. |
|||||||||||||||||||||||
Оглавление |
|||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|||||||||||||||||||||||