До хаосаМы уже говорили о том, какие факторы конструктивного характера могут привести к возникновению «метафизики гомеостатов». При этом мы предложили весьма упрощённую классификацию источников «метафизической точки зрения». Могло бы показаться, что столь трудные и столь устойчивые в историческом масштабе проблемы, как вопрос о смысле бытия, об ограниченности существования индивидуума, о возможности трансцендентного познания, мы хотим решить на нескольких страницах, сославшись на некоторые кибернетические аналогии. Я хотел бы оградить себя от упрека в такой «поверхностности». Ни от чего не отрекаясь, я лишь замечу, что и предыдущие рассуждения и последующие, ещё более дерзкие, примитивны как в первое приближение. Если мы являемся венцом творения, если к жизни нас призвало Если же, напротив, мы сочтём себя лишь начальным этапом эволюции, который для нас как для вида начался полмиллиона лет назад, и примем к тому же, что эволюция эта может (хотя и не обязательно) продолжаться ещё миллионы лет, то наше нынешнее неведение отнюдь не влечёт за собой неведения будущего. Я не утверждаю, что мы найдём ответ на все вопросы такого рода; скорее, я думаю, мы перерастем вопросы, на которые нет ответа, — и это не потому, что ответ на Единственным средством воздействия на технологию — я говорил об этом раньше — является другая технология. Разовьём это утверждение. Природа неисчерпаема в своих возможностях, количество содержащейся в ней информации, как сказал бы кибернетик, равно бесконечности. Поэтому мы не можем «каталогизировать» всю природу: ведь даже как цивилизация мы ограничены во времени. Однако, будучи технологами, мы можем в некотором смысле обратить бесконечность Природы против неё самой, оперируя несчетными множествами, подобно тому как поступают математики в теории множеств. Мы можем стереть разницу между «искусственным» и «естественным», — это произойдёт тогда, когда «искусственное» станет сначала неотличимым от естественного, а затем превзойдёт его. Мы ещё будем говорить, как это произойдёт. А как понимать превосходство? Оно означает реализацию с помощью Природы того, что для Природы невозможно. Ага, скажет кто-нибудь, так все эти фразы произносились лишь затем, чтобы дать высокие имена творениям рук человеческих — разным там машинам, которых Природа не создаёт. Всё зависит от того, что мы вкладываем в понятие «машина». Это понятие может, естественно, означать и лишь то, что мы до сих пор научились строить. Но если под «машиной» мы будем подразумевать всё то, что проявляет регулярность своего поведения, положение изменится. При столь широком подходе уже безразлично, сделана ли «машина» из существующей материи — из тех ста элементов, которые уже открыты, — или же из пучков излучения или из гравитационных полей. Несущественно также, использует ли эта «машина» энергию или же «создает» её. Конечно, в мире естественных явлений невозможно создать энергию из ничего. Можно было бы, однако, из разумных существ и окружающей их среды сконструировать систему, которая вела бы себя так, что в ней не действовали бы известные нам законы термодинамики. Кто-нибудь бросит реплику, что такая система «искусственна» и что каким-то хитрым способом и незаметно для живущих в ней существ мы должны сообщать ей энергию извне. Однако мы не знаем, нет ли у Метагалактики источников энергии, внешних по отношению к ней в том же смысле, в каком были бы внешними источники, «подключённые» к нашей системе. Возможно, Метагалактика ими обладает, а возможно, вечным притоком энергии она обязана бесконечности Вселенной. А если оно так и есть, разве означало бы это, что Метагалактика «искусственна?» Мы видим, что всё зависит от масштабов рассматриваемых явлений. Следовательно, машина — это система, проявляющая какую-либо регулярность поведения, вероятностную или детерминистическую. При таком понимании машиной является атом, яблоня, звёздная система или сверхъестественный мир, — всё то, что мы сумеем построить и что будет вести себя следующим образом: будет обладать внутренними и определёнными внешними состояниями, причём связи, наблюдаемые между множествами этих состояний, будут подчиняться некоторым закономерностям. Вопрос о том, где сейчас находится сверхъестественный мир, равносилен вопросу, где находилась швейная машина до появления человека. Нигде — но её можно было построить. Безусловно, швейную машину построить легче, чем этот мир. Однако мы постараемся доказать, что нет никаких запретов, которые бы делали невозможным даже создание «вневременности». Добавим вслед за Эшби, что существует два рода машин. Простая машина — это система, которая ведёт себя так, что её внутреннее состояние, а также состояние внешней среды однозначно определяют последующее состояние. Если мы имеем дело с непрерывными величинами, то адекватное описание такой машины даёт система обыкновенных дифференциальных уравнений с временем в качестве независимой переменной (С этим утверждением автора трудно согласиться. Безусловно, системы обыкновенных дифференциальных уравнений пригодны для описания некоторых простых (в смысле У. Р. Эшби) машин. Но вряд ли этот математический аппарат описывает все такие машины. — Прим. ред.). Такие описания на символическом языке математики широко применяются в физике, и в частности в астрономии. Относительно таких систем («машин»), как маятник, как тело, падающее в поле тяготения, или вращающаяся планета, система этих уравнений даёт нам столь точное приближение к действительной траектории явления, что оно вполне нас удовлетворяет 8. В отношении такой сложной машины, какой является живой организм, мозг или общество, такое представление («символическое моделирование») применить практически невозможно. Очевидно, всё зависит от того, как много мы хотим о системе знать. Потребность в знании определяется целью, к которой мы стремимся, а также привходящими обстоятельствами. Если такой системой является повешенный и мы хотим определить, то есть предугадать, его будущие состояния как маятника, то достаточно учесть две переменные (угловое отклонение и угловую скорость). Если же это живой человек и нам желательно предугадать его поведение, то количество существенных переменных, которые следует учитывать, становится огромным, хотя и в этом случае наше предсказание позволит определить будущее состояние с вероятностью тем большей, чем больше переменных мы примем во внимание; однако эта вероятность никогда не будет равна единице (практически она достигает этого предела; на практике, например, вероятность 0,9999999 вполне достаточна). Имеются математические способы приближённых решений для случая, когда количество существенных переменных делает бесполезным применение обычного аналитического метода. Примером может служить так называемый метод Монте-Карло. Однако не будем отвлекаться: нас занимает в данном случае не математика, да и применяемые ей орудия, как можно предполагать, в будущем уступят место иным. Проблемы, которые возникают при столкновении со «сложными машинами», исследуются в настоящее время рядом новых дисциплин. Это — теория информации, исследование операций, теория планирования эксперимента, теория решений, теория игр, линейное программирование, теория управления, динамика групповых процессов. Нам кажется, что все эти теории (равно как и ещё некоторые) войдут в общую теорию систем. Надо думать, что развитие этой общей теории пойдёт в двух направлениях, так как, с одной стороны, с её помощью можно осмыслить теорию физических систем — таких, какие даёт нам Природа, а с другой — развить теорию математических систем; последняя не занимается реальным существованием исследуемых связей, заботясь лишь о том, чтобы такого рода системы были свободны от внутренних противоречий. Такое раздвоение пока ещё отчётливо не наступило. Мы осмеливаемся, однако, предвидеть состояние, при котором эти две ветви как бы вновь объединятся; это будет означать возможность конструирования систем с произвольными свойствами, встречающимися, а может быть и не встречающимися, в реальном мире. Здесь надлежит сделать одну оговорку. Природа при всей бесконечности своих связей ограничена существованием некоторых запретов (невозможно получить энергию «из ничего»; невозможно превысить скорость света; невозможно измерить одновременно положение и импульс электрона и так далее). До тех пор пока мир наш в значительной степени тождествен миру Природы с некоторыми нашими «переделками» (благодаря технологической деятельности), до тех пор пока мы сами являемся исключительным (или почти исключительным) следствием естественных процессов (биоэволюции) — до тех пор ограничения Природы будут и нашими ограничениями. В этом смысле можно было бы воспроизвести когда-нибудь Наполеона, однако не так, чтобы, будучи точной копией оригинала, он мог бы ещё, сверх того, летать при помощи простых взмахов рук. В нашем обыкновенном мире это невозможно. Чтобы такой Наполеон мог летать, необходимо, кроме того, создать для него такую среду, в которой полёты «по моему хотению» были бы возможными. Иначе говоря, для этой цели нужно создать искусственный мир, изолированный от естественного. Чем выше при этом будет степень изоляции созданного нами мира от естественного, тем заметнее может быть и отличие действующих в этом мире законов. Оппонент, с которым мы уже столкнулись выше, скажет, что это мошенничество, потому что исполнение таких желаний, как полет при взмахе рук, мы должны были бы умело «встроить» в этот наш синтетический изолированный от Природы мир. Правильно. Однако, поскольку мы считаем Природу конструктором и ничем сверх того, она, по нашему мнению, «вмонтировала» оппоненту позвоночник, мышцы, почки, сердце, мозг и ряд других, органов; отсюда следует, что он, будучи вполне нормальным человеком, а может быть именно поэтому, тоже представляет собой «мошенничество». Привычку оценивать творения рук человеческих как более жалкие, чем естественные, эту привычку, понятную на нынешнем этапе развития, мы должны отбросить, если собираемся говорить о весьма отдалённом будущем. Мы будем соперничать с Природой в любом отношении: в надёжности и прочности всех наших творений, в универсальности их действия, в отношении их регулирующего потенциала, диапазонов гомеостаза и многих других. Однако этот вопрос мы рассмотрим отдельно. А теперь займёмся следующей частью нашего введения в «пантокреатику», то есть в названное так условно, для удобства и опирающееся на общую теорию физических и математических систем умение достигать всякие, в том числе и не реализованные Природой, цели. Хаос и порядокКак кандидаты в творцы, мы должны сначала заняться хаосом. Что есть хаос? Если при данном событии Х в А могут произойти всевозможные события в В и если такая независимость наблюдается повсеместно, то перед нами хаос. Если же событие Х в А ограничивает определённым образом то, что может произойти в В, то между А и В возникает связь. Если событие Х в А ограничивает события в В однозначно (поворачиваем выключатель — зажигается лампа) связь А и В будет детерминированной. Если событие Х в А ограничивает события в В так, что после события Х в А могут произойти в В события Y или Z, причём У после Х в Л происходит в 40 случаях из 100, Z — в 60 случаях, то связь А и В является вероятностной. Давайте теперь рассмотрим, возможен ли другой «тип» хаоса, а именно такой, чтобы доминирующие в нём связи были полностью неопределёнными (то есть не детерминированными и не вероятностными), ибо нам известно, что и при том и при другом варианте имеется некий порядок. Допустим, что после события Х в А один раз происходит событие Y в В, другой раз — событие U в В, третий раз — событие J в V и так далее. При таких обстоятельствах отсутствие какой-либо регулярности не позволяет обнаружить существования связей вообще, а следовательно, неопределённые связи — это то же самое, что и отсутствие связей вообще, то есть при них возможен лишь хаос. Рассмотрим далее, каким образом можно имитировать хаос. Если у нас есть машина с очень большим количеством клавишей и лампочек, причём после нажатия клавиши загорается какая-нибудь лампочка, то даже если система строго детерминистична, наблюдатель, следящий за её поведением, может прийти к выводу, что перед ним хаос. Ведь если нажатие первой клавиши вызывает загорание лампочки Т, второе нажатие этой же клавиши зажигает лампочку W, третье — лампочку D, четвёртое — лампочку 0, и если эта последовательность очень длинна, так что лишь миллионное нажатие клавиши № 1 зажигает снова лампочку Т, после чего вся серия точно повторяется, то наблюдатель, который не дождался конца одной серии, придёт к выводу, что поведение машины хаотично. Следовательно, хаосу можно подражать с помощью детерминированной системы, если продолжительность серии, в которой одна и та же причина вызывает следствие, кажущееся случайным, больше времени наблюдения. Какое счастье, что Природа не устроена таким образом! Все это говорится не из желания имитировать хаос, а с целью показать, что экспериментатор, а значит, и наука способны обнаружить не всякий вид порядка, то есть присутствия связей. Если событие Х в А ограничивает возможные события в В, то мы говорим, что между А и В существует связь. Поскольку событие Х в А в известной мере определяет то, что произойдёт в В, эту связь можно использовать для передачи информации. Это заодно означает существование организации: А и В составляют некоторую «систему». В Природе существует бесконечное количество связей. Однако не все они в одинаковой степени определяют поведение системы или её частей. В противном случае нам пришлось бы иметь дело с таким количеством существенных переменных, что наука была бы невозможной. Неодинаковый характер связей означает наличие меньшей или большей изоляции системы от остальной части Космоса. На практике мы опускаем как можно больше связей, то есть несущественных переменных. Связь А и В, которая суживает возможные состояния В, наблюдаема как некоторое ограничение. Ограничение чего?» Н еограниченных возможностей?» Нет, количество их не бесконечно. Это — ограничение в рамках множества возможных состояний для В. Но откуда мы знаем, какие состояния возможны? Основываясь на нашем прежнем знании? Но что есть знание? Знание — это ожидание определённого события после того, как произошли некоторые другие события. Кто не знает ничего, может ожидать всего. Кто знает что-то, тот считает, что может произойти не все, а лишь некоторые явления, иные же не произойдут. Следовательно, знание — это ограничение разнообразия и оно тем больше, чем меньше неуверенность ожидающего. Представим себе, что мистер Смит, банковский служащий, живёт у своей тетки-дамы очень строгих правил, сдающей комнату барышне. Передняя стена их двухэтажного домика сделана из стекла, благодаря чему учёный наблюдатель может с другой стороны улицы видеть всё, что делается внутри. Пусть то, что находится внутри домика, будет «космосом»; мы должны его исследовать. Количество «систем», которые можно выделить из этого «космоса», практически бесконечно. Можно рассматривать его, например, «поатомно». В таком случае мы имеем множества молекул, из которых сделаны стулья, столы и тела троих человек. Люди передвигаются, и мы хотим предсказывать их будущие состояния. Поскольку каждое тело состоит из 1025 молекул, следовало бы начертить три раза по 1025 траекторий этих молекул, то есть их пространственно-временных линий. Это не самый удачный подход, так как, пока мы установим одни лишь начальные молекулярные состояния Смита, девушки и тетки, пройдёт 15 миллиардов лет; эти люди будут в могиле, а мы не успеем описать аналитически даже их первый завтрак. Количество рассматриваемых переменных зависит от того, что, собственно говоря, мы хотим исследовать. Когда тетка спускается в погреб за овощами, мистер Смит целует квартирантку. Теоретически, на основе анализа поведения молекул удалось бы даже установить, кто кого поцеловал, но практически — мы уже об этом говорили — наше Солнце успеет раньше погаснуть. Мы были излишне усердны; вполне достаточно рассматривать наш «космос» как систему, состоящую из трёх тел. В нём периодически наблюдаются сближения двух тел, когда третье спускается в погреб. Вначале появляется Птолемей нашего «космоса». Он видит, что два тела сближаются, когда третье удаляется. Поэтому он создаёт чисто описательную теорию: рисует необходимые окружности и эпициклы, благодаря чему заранее становится известно, какие положения примут два верхних тела, когда третье окажется в самом нижнем положении. При этом так уж получилось, что в самом центре окружностей, которые нарисовал Птолемей, находится мойка, и он приписывает ей свойства очень важного центра этого «космоса». Все вращается вокруг мойки. Астрономия потихоньку развивается. Приходит Коперник, ниспровергает «мойко-центрическую» теорию, а после него Кеплер чертит гораздо более простые по сравнению с птолемеевыми траектории трёх тел. Затем появляется Ньютон. Он заявляет, что поведение тел зависит от их взаимной привлекательности, то есть силы притяжения. Мистер Смит притягивает квартирантку, а она его. Когда тетка близко, оба вращаются вокруг неё, потому что сила притяжения тетки соответственно больше. Теперь мы уже умеем все прекрасно предвидеть. И вдруг появляется Эйнштейн нашего «космоса», который подвергает критике теорию Ньютона. Он считает, что постулат действия Присутствие тетки вызывает такую деформацию эротодезических кривых, что соединение квартирантки со Смитом исключается. Новая теория более проста, так как не утверждает наличия каких-то «сил» и все сводит к геометрии пространства. И уж особенно хороша её основная формула (энергия поцелуев равна произведению эротических масс на квадрат скорости звука, ибо как только за теткой захлопываются двери и этот звук доходит до Смита и квартирантки, они тотчас же бросаются друг другу в объятия). Потом, однако, приходят новые физики и среди них Гейзенберг. Они убеждаются в том, что Эйнштейн действительно хорошо предсказывал динамические состояния системы (состояние целования, нецелования и так далее), но более точные наблюдения при помощи огромных оптических приборов, позволяющих следить за отдельными тенями рук, ног и голов, показывают, что можно различать там такие переменные, которые не были учтены теорией эротической относительности. Эти физики не оспаривают существования эротической гравитации, однако, наблюдая мелкие элементы, из которых состоят космические тела (то есть руки, ноги, головы), они замечают индетерминизм их поведения. Например, руки мистера Смита при целовании не всегда принимают одно и то же положение. Так-то и начинается создание новой области науки, называемой микромеханикой мистера Смита, тетки и квартирантки. Это статистическая, вероятностная теория. Детерминировано ведут себя большие части системы (едва лишь двери закроются за теткой, мистер Смит и квартирантка тотчас же и так далее), однако это является результатом суммарного действия индетерминистических закономерностей. Но тут-то и начинаются подлинные трудности, так как нельзя перейти от микромеханики Гейзенберга к макромеханике Эйнштейна. Тела как единое целое ведут себя детерминированно, но ухаживания происходят по-разному. Эротической гравитацией можно объяснить не все. Почему иногда Смит берёт квартирантку за подбородок, а иногда нет? Статистики множатся. И вдруг бобма: руки и ноги не являются неделимыми элементами, они делятся на плечи, предплечья, бедра, икры, пальцы, ладони и так далее. Количество «элементарных частиц» устрашающе растёт. Уже нет никакой единой теории их поведения, и между общей теорией эротической относительности и квантовой микромеханикой (был открыт квант ласкания) зияет непреодолимая пропасть. Действительно, согласование теории гравитации и квантовой теории (для настоящего Космоса, а не для того, из нашей шутки) — это нерешённый до сих пор вопрос. Говоря с общих позиций, каждую систему можно определить таким образом, что она будет состоять из любого заданного числа частей, после чего в свою очередь можно заняться раскрытием связей между этими частями. Если мы хотим предсказывать только некоторые общие состояния, нам достаточно иметь теорию с небольшим количеством переменных. Если же мы исследуем системы все более дробные по отношению к предыдущим, проблема усложняется. Звезду от звезды изолирует Природа, но изолировать отдельные атомные частицы должны мы сами: это одна из тысяч забот. Необходимо выбирать такие описания, в которых при минимуме принятых во внимание переменных достигается возможно большая точность предсказаний. Наш пример был шуткой, так как поведение этих трёх лиц невозможно описать детерминистически. Для этого им не хватает достаточной регулярности поведения. Подобный подход возможен и, пожалуй, напрашивается сам собой, когда система проявляет большую регулярность и значительную степень изоляции. Эдакое встречается на небесах, но не в квартире. Однако при возрастании числа переменных даже в астрономии появляются трудности применения дифференциальных уравнений. К таким трудностям приводит уже определение траекторий трёх тяготеющих тел, а для шести тел такие уравнения и вовсе невозможно решить. Наука существует благодаря тому, что она создаёт упрощённые модели явлений, опускает менее существенные переменные (например, принимает, что массы сравнительно малых тел системы равны нулю) и ищет инварианты. Таким инвариантом является, например, скорость света. В настоящем Космосе инварианты получить легче, чем в квартире тетки. Если (причем вполне обоснованно) поцелуй мы не склонны считать явлением столь же универсальным, как и гравитация, но хотим узнать, почему Смит целует квартирантку, то мы попали впросак. При всех своих ограничениях математическая механика настолько универсальна, что позволяет рассчитывать на тысячи и миллионы лет вперёд положения космических тел. Однако как рассчитать пути импульсов мозга мистера Смита, чтобы предвидеть «оральные коинциденции» с девушкой или, выражаясь не столь научно, просто поцелуи? Если бы даже это и было возможным, символическое описание последовательных состояний мозга оказывается более сложным, чем само явление (то есть прохождение импульсов в нейронной сети). При таком положении вещей нейронный эквивалент акта чихания — это том, переплет коего нужно раскрывать подъёмным краном. На практике математический аппарат увязнет в создавшихся сложностях намного раньше, чем заполнится такой том. Что же остаётся? Признать само явление наиболее совершенным своим описанием, заменить аналитическую деятельность — деятельностью созидательной. Одним словом, остаётся имитационная, подражательная практика. Сцилла и Харибда, или Об умеренностиМы находимся в самом опасном месте наших рассуждений. Мы поставили много вопросов, но всё время оттягивали ответы на них; мы дали много обещаний, снабженных столь выспренными названиями, как «пантокреатика»; мы сказали Это я должен объяснить поточнее. Книги, популяризующие нынешнее состояние знаний — скажем, знаний в области физики, — причём популяризующие хорошо, представляют дело так, будто существуют две чётко отделённые друг от друга области: область того, что наукой уже раз и навсегда установлено, и того, что ещё до конца не выяснено. Это похоже на посещение прекрасного, снизу доверху великолепно обставленного здания, его отдельных покоев, где то тут, то там лежат на столах нерешённые головоломки. Мы покидаем сей храм с уверенностью, что эти загадки рано или поздно будут решены, в чём убеждает нас великолепие всей постройки. У нас даже не мелькнет и мысли, что решение этих головоломок может привести к разрушению половины здания. Такое же впечатление производят на нас учебники математики, физики или теории информации. На первый план выдвигается впечатляющая конструкция. Неясные проблемы укрыты от наших глаз лучше, чем в популярной лекции, ибо популяризатор (я имею в виду популяризатора-учёного) понимает, какой потрясающий эффект вызывает появление Тайны во время лекции. Напротив, автор учебника (например, университетского) прежде всего печется о прочности представляемой конструкции, о её монолитности; он ни во что не ставит Конечно, тот, кто знает предмет, сориентируется, сколь многими способами можно толковать материально-физическое значение всей этой символики квантовых уравнений, какие бездны противоборствующих точек зрения скрывает в себе та или иная формула. Он поймёт также, что другой теоретик написал бы книгу, во многих местах расходящуюся с той, которая лежит перед ним. Все это понятно и необходимо, так как нельзя ни популяризировать, ни учить, сразу вводя в гущу споров по актуальным вопросам. Читатель популярной книги и без того не примет участия в решении этих вопросов, а человек, посвятивший себя науке, должен вначале познать её оружие и конфигурацию поля боя, пройти муштру и усвоить основы тактики, прежде чем сможет принять участие в её стратегическом совете. Однако нашей целью не является ни популяризация того, что уже создано, ни приобретение в какой-либо степени профессиональных знаний. Мы хотим заглянуть в будущее. Если бы мы раздули наши притязания до чудовищных размеров и захотели бы сразу оказаться на самых вершинах науки, там, где спор ведут не популяризаторы или авторы учебников, а сами создатели того, что затем изучается и распространяется, если бы мы осмелились принять участие в их спорах, то это было бы чем-то худшим, чем просто комическая ситуация. Это была бы ошибка. Оставим комичность — что, собственно говоря, мы стали бы делать? Допустим, что мы понимаем всё, что говорят специалисты в области теории информации, математики или физики, высказывающиеся в пользу тех или иных взглядов. Эти взгляды противоречивы. Концепция квантования пространства непримирима с классической квантовой механикой. «Скрытые параметры» элементарных частиц существуют или не существуют. Бесконечность скорости распространения процессов в микромире противоречит принципу конечности скорости света. «Интеллектроники» говорят, что можно построить модель мозга из двоичных (дискретных) элементов. «Фунгоидисты» утверждают, что это невозможно. Обе стороны имеют прекрасных специалистов, способных совершить очередные перевороты в науке. Должны ли мы пытаться эклектрически примирить их предположения? Это бесполезно: научный прогресс не рождается из компромиссов. Должны ли мы признать правоту аргументов одной стороны в противоположность другой? Как же найти критерий выбора, если Бор спорит с Эйнштейном или Брауэр с Гилбертом? Может быть, мы должны обратиться за этими критериями к философам? Но ведь у них даже в границах одной философской школы толкования основ физики или математики являются предметом споров! И при всём том это не академические проблемы и не ссоры вокруг значения Вот так, следовательно, выглядит наша Сцилла: бездна, к берегам которой мы легкомысленно устремились, имея в виду удалённое на тысячелетия будущее. Различимы ли элементарные частицы? Можно ли постулировать реальное существование «антимира?» Существует ли потолок сложности системы? Имеется ли предел устремлениям «вниз», к бесконечно малым размерам, и «вверх», к безграничным величинам, или они непонятным способом замыкаются наподобие круга? Можно ли сообщать частицам произвольно высокую энергию? — Что нам до этих дел? Чем являются они для нас? Да всем, если так называемой «пантокреатике» не суждено остаться пустословием, тщетным бахвальством, достойным глупца или ребёнка. Если бы каким-то чудом мы сконцентрировали в себе знания самых умных специалистов Земли, то и это нам ничего бы не дало: ведь речь идёт не о том, что в наше время нельзя быть универсальным мудрецом, а о том, что такой мудрец, даже если бы он и существовал, должен был бы решать вопросы о своей принадлежности к какому-нибудь из лагерей. Волновая и корпускулярная природа материи проявляются в зависимости от того, что мы исследуем. Не так ли обстоит дело и с длиной? Не является ли длина чем-то подобным цвету — не свойством явлений, данным на всех уровнях действительности, а чем-то, что возникает? Если задать приведённые выше вопросы, то самый выдающийся специалист ответит, что ему неизвестно решение, отличное от его собственной точки зрения, уж конечно, опирающейся на гигантскую теоретическую конструкцию (с которой, однако, не согласны другие, не менее выдающиеся специалисты). Я не хотел бы, чтобы от моих слов создалось впечатление, что современная физика или кибернетика — всего лишь моря противоречий и вопросительных знаков. Это не так. Достижения огромны, но их слава не может рассеять окутывающую их мглу. В истории науки бывали периоды, когда казалось, что возводимое здание уже почти закончено и удел будущих поколений — лишь совершенствовать его мелкие детали. Такой оптимизм господствовал, например, на склоне XIX века, во времена «неделимости» атома. Но есть и такие периоды, как нынешний, когда, собственно говоря, уже нет несокрушимых научных тезисов, опровержение которых все специалисты признали бы невозможным. В наше время шутливое замечание одного выдающегося физика о том, что новая теория недостаточно безумна, чтобы быть истинной, звучит, по сути дела, серьёзно. Ныне учёные готовы принести на алтарь новой теории наиболее фундаментальные и освящённые истины; они высказывают сомнение в том, что микрочастица существует в определённом месте пространства-времени; они допускают, что материя возникает из ничего (такую гипотезу высказал Хойл); наконец, они ставят вопрос, применимо ли к внутриатомным явлениям вообще такое понятие, как длина (И. С. Шапиро, О квантовании пространства и времени в теории «элементарных» частиц, «Вопросы философии», 1962, № 5. — Прим. ред.). Но не менее опасной является Харибда легкомысленной «поверхностности», жонглирующая неограниченными возможностями науки; водоворот космической болтовни родом из «научной фантастики», области, в которой всё можно сказать, так как ни за что не отвечаешь; области, где ко всему подходят с лёгкой руки, скачут по верхам, где дыры и лохмотья в логических рассуждениях заслоняются псевдокибернетической риторикой, где расцветают трюизмы о «машинах, пишущих стихи, как Шекспир», и глупости о космических цивилизациях, с которыми найти общий язык не труднее, чем с соседом по квартире. Поистине нелегко провести корабль между этими двумя затягивающими водоворотами. Сомневаюсь, возможно ли это вообще. Но даже если бы нашему плаванию суждено было закончиться фатально, navigare necesse est (Вести корабль необходимо [лат.] — Прим. пер.), ибо, не тронувшись с места, никуда наверняка не попадёшь. Следовательно, необходима умеренность. Какая? — Конструкторская, так как мы хотим настолько узнать мир, насколько это необходимо, чтобы его улучшить. А если нам это не удастся сделать, то уж лучше, чтобы нас поглотила Сцилла, чем Харибда. Молчание КонструктораЯ уже говорил, что компасом в нашем плавании между бездной знания и пропастью глупости будет умеренность Конструктора. Умеренность эта означает веру в возможность успешного действия и в необходимость определённого отказа от чего-то. Прежде всего это отказ от задавания «окончательных» вопросов. Это не молчание человека, прикидывающегося глухим, а молчание действия. О том, что действовать можно, мы знаем намного увереннее и лучше, чем о том, каким образом это действие происходит. Конструктор — не узкий прагматик, — не строитель, который сооружает свой дом из кирпичей, не заботясь, откуда они взялись и что они собой представляют, лишь бы этот дом был построен. Конструктор знает о своих кирпичах все, кроме того, как они «выглядят», когда на них никто не смотрит. Он знает, что свойства являются отличительными чертами ситуаций, а не вещей. Существует химическое вещество, которое для одних людей не имеет вкуса, а для других — горько. Горько оно для тех, кто унаследовал от своих предков определённый ген. Не у всех людей он есть. Вопрос о том, «действительно» ли это вещество является горьким, по мнению Конструктора, вовсе лишён смысла. Если человек чувствует горечь этого вещества, значит, для него оно является горьким. Можно исследовать, чем отличаются друг от друга люди этих двух типов. Это все. Некоторые считают, что, кроме свойств, являющихся функцией ситуации (таких, как горечь или длина) и поэтому изменчивых, существуют ещё неизменные свойства, и наука занимается поиском именно таких инвариантов, вроде скорости света. Эту точку зрения разделяет и Конструктор. Он совершенно уверен, что мир будет существовать и после него; в противном случае он не работал бы для будущего, которого не увидит. Ему говорят, что мир будет существовать также и после исчезновения последнего живого существа, но это будет скорее мир физики, чем чувственных восприятий. В этом мире по-прежнему будут атомы и электроны, но не будет в нём ни звуков, ни запахов, ни красок. Однако Конструктор спрашивает, к какой же физике будет относиться этот мир: к физике девятнадцатого века с её атомами-шариками, к современной с волново-корпускулярным атомом или же к будущей, той, которая охватит единым синтезом свойства атомов и свойства галактик? Этот вопрос он задаёт не потому, что не верит в реальность мира. Реальность мира он принимает как предпосылку. Однако он видит, что свойства тел, открываемые физикой, также являются функциями ситуаций, а именно функциями состояния физической науки в данный период времени. Можно говорить о том, что океан существует, когда никого нет, но нельзя спрашивать, как же он тогда «выглядит». Если он В ответ Конструктор предлагает своему оппоненту вместе с ним присмотреться к человеческой деятельности. Что бы люди ни делали, они делают это с Что является целью науки? Познание «сущности» явлений? Но как можно узнать, что мы её уже познали? Что это — уже вся «сущность», а не часть ее? То есть объяснение явлений? Но в чем же состоит это объяснение? В сравнении? Можно сравнить земной шар с яблоком и биологическую эволюцию с эволюцией технологической, но с чем же сравнить шредингеровскую пси-функцию из уравнения электрона? А с чем — «странность» частиц? Согласно Конструктору, наука — это предвидение. Многие философы придерживаются такого же мнения: больше всего об этом говорят неопозитивисты. Они, кроме того, считают, что философия науки — это по существу теория науки и что они знают, как наука создаёт и подтверждает (или опровергает) все новые и новые теории. Теория есть обобщение экспериментальных фактов. Опираясь на них, она предсказывает будущие состояния. Если эти предсказания сбудутся и, сверх того, укажут на существование явлений, до сих пор неизвестных, — теория признается истинной. В принципе так оно и есть; фактически же дело обстоит сложнее. Упомянутые философы держатся подобно пожилой даме, которая на страницах газеты ведёт «уголок влюблённых». Дело не в том, что её советы бессмысленны; ничего подобного, они могут быть даже весьма разумными, но ими невозможно воспользоваться. У этой пожилой дамы есть жизненный опыт, и, опираясь на «эротическую статистику», она, например, советует девушке бросить легкомысленного парня. Философ, со своей стороны, знает историю науки и, не предвидя многих явлений, советует физикам бросить их теорию, так как эта теория «изменяет» им. Такие разумные советы давать нетрудно. Девушка верит, что ей удастся повлиять на этого парня к лучшему, и физики то же самое думают о своей теории. Впрочем, у девушки может быть несколько парней, которые ей нравятся; то же самое и с физиками. Они должны отказаться от таких-то и таких-то точек зрения в пользу такой-то. Если они откажутся от локализации частицы, то получат одну возможность предвидеть, но потеряют другую. Если они начнут квантовать пространство и введут понятие бесконечной скорости распространения изменений, то заодно смогут предвидеть существование таких субатомных частиц, которые и в самом деле существуют; вместе с тем это решение, затрагивающее фундамент такого здания, каким является физика, вызовет страшный толчок на всех его этажах. Ни в одной науке нет теории, которая учитывала бы и предвидела бы «все». Но в большинстве случаев с таким положением можно смириться, так как то, от чего отвлекаются, пока менее существенно для предвидений этой науки. А вот в физике царит драматическая ситуация: неизвестно, что, собственно, является менее существенным и может отправляться за борт. Легко решать, когда мы находимся в корзине резко снижающегося воздушного шара и можно выбросить за борт либо мешок с песком, либо товарища. Но представьте себе ситуацию, в которой неизвестно, что является балластом, а что бесценным сокровищем! Ведь уравнениям квантовой механики можно приписать либо значение «балласта», иначе говоря «пустоты», то есть известного формального приёма, либо же значение объективное, физическое. Такие вопросы, если их рассматривать постфактум, когда они стали уже частью личной истории двух людей или элементом истории науки, позволяют и пожилой даме и философу утвердиться в мнении, что они были правы. Конечно, лучше великолепный влюблённый парень, чем легкомысленный шалопай; лучше теория, которая без математических натяжек предвидит Всё, чем теория, залатанная экстренными поправками. Но где взять такого принца и такую теорию? Пожилая дама и философ — это доброжелательные наблюдатели. Конструктор вместе с физиками втянулся в деятельность. Поэтому он отдаёт себе отчёт в том, что полезность можно понимать по-разному: как морфинист и как Ньютон. Вот он и не даёт вовлечь себя в споры, которые считает бесплодными. Если мозг состоит из атомов, значит ли это, что атомы имеют «психическую потенцию?» Если волна выбросит на берег три палки, из них можно сложить треугольник; но их можно также взять в кулак и бить ими кого-нибудь по голове. «Свойственны» ли потенции побоев и геометрии этим палкам? Конструктор предлагает все решать на основе опыта, а если опыт невозможен и никогда возможным не будет, вопрос перестаёт для него существовать. Вопрос о том, «как существует математика» или «почему существует мир», он оставит без ответа не Безумие, не лишённое методаДавайте представим себе портного-безумца, который шьёт всевозможные одежды. Он ничего не знает ни о людях, ни о птицах, ни о растениях. Его не интересует мир, он не изучает его. Он шьёт одежды. Не знает, для кого. Не думает об этом. Некоторые одежды имеют форму шара без всяких отверстий, в другие портной вшивает трубы, которые называет «рукавами» или «штанинами». Число их произвольно. Одежды состоят из разного количества частей. Портной заботится лишь об одном: он хочет быть последовательным. Одежды, которые он шьёт, симметричны или асимметричны, они большого или малого размера, деформируемы или раз и навсегда фиксированы. Когда портной берётся за шитье новой одежды, он принимает определённые предпосылки. Они не всегда одинаковы, но он поступает точно в соответствии с принятыми предпосылками и хочет, чтобы из них не возникало противоречие. Если он пришьет штанины, то потом уж их не отрезает, не распарывает того, что уже сшито, ведь это должны быть всё же костюмы, а не кучи сшитых вслепую тряпок. Готовую одежду портной относит на огромный склад. Если бы мы могли туда войти, то убедились бы, что одни костюмы подходят осьминогу, другие — деревьям или бабочкам, некоторые — людям. Мы нашли бы там одежды для кентавра и единорога, а также для созданий, которых пока никто не придумал. Огромное большинство одежд не нашло бы никакого применения. Любой признает, что сизифов труд этого портного — чистое безумие. Точно так же, как этот портной, действует математика. Она создаёт структуры, но неизвестно чьи. Математик строит модели, совершенные сами по себе (то есть совершенные по своей точности), но он не знает, модели чего он создаёт. Это его не интересует. Он делает то, что делает, так как такая деятельность оказалась возможной. Конечно, математик употребляет, особенно при установлении первоначальных положений, слова, которые нам известны из обыденного языка. Он говорит, например, о шарах, или о прямых линиях, или о точках. Но под этими терминами он не подразумевает знакомых нам понятий. Оболочка его шара не имеет толщины, а точка — размеров. Построенное им пространство не является нашим пространством, так как оно может иметь произвольное число измерений. Математик знает не только бесконечности и трансфинитности, но также и отрицательные вероятности. Если нечто должно произойти наверное, его вероятность равна единице. Если же явление совсем не может произойти, она равна нулю. Оказывается, что может случиться нечто меньшее, чем просто ненаступление события. Математики прекрасно знают, что не знают, что делают. Весьма компетентное лицо, а именно Бертран Рассел, сказал: «Математика может быть определена как доктрина, в которой мы никогда не знаем, ни о чём говорим, ни того, верно ли то, что мы говорим» (Б. Рассел, Новейшие работы о началах математики. Сб. 1, «Новые идеи в математике», Сп., 1913 (эта работа Б. Рассела напечатана впервые в «International Monthly» в 1901 году) — Прим. ред.). Математика в нашем понимании является пантокреатикой, реализуемой на бумаге с помощью карандаша. Поэтому мы именно о ней говорим: нам кажется, что это она в будущем запустит «всемогущие генераторы» других миров. Конечно, мы от этого ещё далеки. Вероятно также, что часть математики навсегда останется «чистой», или, если хотите, пустой, подобно тому как пусты одежды на складе сумасшедшего портного. Язык — это система символов, делающих возможным общение, так как эти символы поставлены в соответствие явлениям внешнего (гроза, собака) или внутреннего (печально, приятно) мира. Если бы не было действительных бурь и грусти, не было бы и этих слов. Повседневный язык нечеток, границы употребляемых в нём значений размыты; кроме того, язык как целое эволюционирует вместе с общественными и культурными изменениями. Дело в том, что язык является «неавтономной» структурой, так как языковые образования соотносятся с внеязыковыми ситуациями. В некоторых обстоятельствах язык может стать высокоавтономным («Крылышкуя золотописьмом тончайших жил», «Тарарахнул зензивер») как благодаря поэтическому словотворчеству (приведённый пример), так и благодаря тому, что он становится языком логики и подвергается строгой муштре. Однако всегда удаётся проследить его генетические связи с действительностью. Что касается символов математического языка, то они не относятся ни к чему, кроме него. Шахматы несколько похожи на математическую систему. Они являют собой замкнутую систему с собственными основными положениями и правилами поведения. Нельзя задавать вопрос об истинности шахмат, так же как и нельзя спрашивать об истинности чистой математики. Можно лишь спросить, разыграна ли данная математическая теория или данная партия шахмат правильно, то есть в соответствии с правилами. Однако шахматы не имеют никакого прикладного значения, в то время как математика такое значение имеет. Существует точка зрения, которая эту практическую пригодность математики объясняет очень просто: Природа по самому своему существу «математична». Так считали Джине и Эддингтон; я думаю, что и Эйнштейну такая точка зрения также не была чужда. Это следует из его высказывания: «Herr Gott ist raffiniert, aber boshaft ist er nicht» (Господь искушён, но не злобен [нем.] — Прим. ред.). Запутанность Природы — так я понимаю эту фразу — можно разгадать, поймав её в сети математических закономерностей. Если бы, однако, Природа была злорадной — аматематичной, — то она представляла бы собой как бы злобного лгуна: была бы нелогичной, противоречивой, по крайней мере неопределённой в событиях, не поддавалась бы расчётам. Как известно, Эйнштейн до конца жизни возражал против принятия квантового индетерминизма и пытался в мысленных экспериментах свести его явления к детерминистическим законам. Начиная с XV века физики перетряхивают склады с залежами «пустых одежд», создаваемых математикой. Матричное исчисление было «пустой структурой», пока Гейзенберг не нашёл «кусочка мира», к которому подходит эта пустая конструкция. Физика кишит такими примерами. Процедура теоретической физики, а заодно и прикладной математики такова: эмпирическое утверждение заменяется математическим (то есть определённым математическим символом сопоставляются физические значения, вроде «массы», «энергии» и так далее), полученное математическое выражение преобразуется в соответствии с законами математики (это чисто дедуктивная, формальная часть процесса), а окончательный результат путём повторной подстановки материальных значений преобразуется в эмпирическое утверждение. Это новое утверждение может предсказывать будущее состояние явления или может выражать некоторые общие равенства (например, что энергия равна произведению массы на квадрат скорости света) или физические законы. Итак, физику мы переводим на язык математики, с математикой обращаемся по-математически, результат снова переводим на язык физики и получаем соответствие с действительностью (конечно, при условии, что все действия мы проводим, опираясь на «доброкачественную» физику и математику). Это, безусловно, упрощение, так как современная физика настолько «пропитана» математикой, что даже исходные положения физики содержат её в изобилии. Нам кажется, что Может, когда-нибудь и матричное исчисление будет заменено в квантовой механике иным, позволяющим осуществлять более точные, предсказания. Но тогда будет признана устаревшей только современная квантовая механика. Матричное исчисление не устареет, ибо эмпирические системы утрачивают свою актуальность, математические же — никогда. Их бессмертие — в их «пустоте». Что, собственно говоря, значит «нематематичность» Природы? Мир можно трактовать двояко. Либо каждый элемент реальности имеет точный эквивалент (математический «двойник») в физической теории, либо же не имеет его (то есть не может иметь). Если для данного явления возможно создать теорию, которая не только предсказывает определённое конечное состояние явления, но также и все промежуточные состояния, причём на каждом этапе математических преобразований можно назвать материальный эквивалент соответствующего математического символа, то в этом случае можно говорить об изоморфизме теории и реальности. Тем самым математическая модель является «двойником» реальности. Такой постулат был свойствен классической физике, и от него повелось убеждение в «математичности Природы» (Д. Бом, Квантовая теория, Судпромгиз, 1961. — Прим. ред.). Есть, однако, и другая возможность. Если мы метко выстрелим в летящую птицу и она упадёт замертво, мы получим такой конечный результат действий, который был нам нужен. Однако траектории пули и птицы совсем не изоморфны. Они сходятся только в определённой точке, которую мы назовём «конечной». Точно так же теория может предвидеть конечное состояние явления, несмотря на то что порою отсутствует взаимооднозначное соответствие между элементами реального явления и математическими символами теории. Наш пример примитивен, но, может быть, это лучше, чем просто отсутствие примера. Физиков, убеждённых в «двойниковом» отношении математики и мира, сегодня немного. Это никоим образом не означает, как я пытался пояснить на примере со стрелком, что от этого уменьшаются шансы предвидения. Просто мы подчёркиваем роль математики как орудия. Она перестаёт быть точным описанием, подвижной «фотографией» явления. Математика скорее становится чем-то вроде лестницы, по которой можно подняться на гору, хотя сама она вовсе не похожа на эту гору. Давайте останемся ненадолго возле этой горы. По фотографии горы можно, применяя соответствующий масштаб, определить её высоту, падение склона и так далее. Лестница тоже может нам многое сказать о горе, к которой её прислонили. Однако вопрос о том, что на горе соответствует перекладинам лестницы, не имеет смысла. Ведь они служат для того, чтобы добраться до вершины. Точно так же невозможно спрашивать о том, является ли эта лестница «истинной». Она лишь может быть лучшей или худшей как орудие достижения цели. Но то же самое можно, собственно говоря, сказать и о фотографии горы. Эта фотография кажется нам точным образом горы. Однако, если мы будем рассматривать её через все более сильные увеличительные стекла, подробности горного склона распадутся в конце концов на чёрные пятна зерен фотоэмульсии. Эти зерна в свою очередь состоят из молекул бромистого серебра. Соответствует ли отдельным молекулам что-либо однозначно на горном склоне? Нет. Вопрос о том, куда «девается» длина внутри атомного ядра, таков же, как и вопрос, куда «девается» гора, если мы рассматриваем её фотографию под микроскопом. Фотография достоверна как единое целое — и точно так же как единое целое будет достоверна теория (например, квантов), которая позволит лучше предвидеть образование барионов и лептонов, а также скажет, какие ещё частицы могут существовать, а какие — нет. Реакцией на такие рассуждения может быть грустное заключение, что Природа непознаваема. Но это ужасное недоразумение. Автор этих строк когда-то втайне надеялся, что мезоны и нейтроны, «несмотря ни на что», окажутся в конце концов похожими на очень и очень маленькие капельки или шарики для пинг-понга. В таком случае они вели бы себя как биллиардные шары, то есть по законам классической механики. Признаюсь, теперь «пинг-понговость» мезонов изумила бы меня больше, чем то, что они не похожи на что-либо известное нам из нашего повседневного опыта. Если несуществующая ещё теория нуклонов позволит управлять, например, звёздными изменениями, я думаю, что это будет щедрым вознаграждением за «таинственность» тех же нуклонов, которая попросту означает, что мы не можем их себе наглядно представить. На этом мы заканчиваем рассуждения о математичности или нематематичности Природы, чтобы вернуться к вопросам, касающимся будущего. Чистая математика до сих пор была складом «пустых структур», в которых физик искал Мы ещё недостаточно подготовлены к рассмотрению той грядущей технологической революции, которую сегодня можно только вообразить. Мы снова вырвались вперёд со слишком большой прытью. Теперь нам следует вернуться назад от пантокреатики к имитологии. Но вначале необходимо будет сказать два слова о систематике этих несуществующих предметов. Новый Линней, или О систематикеСначала одно пояснение. Мы хотим заглянуть в будущее. Остаётся ещё практическая трудность изложения. Мне придётся последовательно говорить о вещах, которые следовало бы представлять одновременно. Ведь моя цель не в том, чтобы составить каталог «будущих открытий», а в том, чтобы указать общие возможности, не впадая в техническое «описательство» (которое было бы на самом деле пустой претензией), общие возможности, но не сводящиеся к общим местам, потому что они некоторым способом определяют образ будущего. Мы никогда не будем утверждать, что нечто произойдёт так-то и так-то, мы лишь считаем, что оно может произойти так-то и так-то, ибо сей труд не фантастическое произведение, а совокупность в разной степени обоснованных гипотез. Эти гипотезы объединяются в единое целое, которое, однако, нельзя описать сразу. С такой же трудностью борется физиолог, желающий уместить в одном учебнике сведения о функциях организма. Он последовательно описывает работу органов дыхания, кровообращение, обмен веществ и так далее. Положение физиолога лучше, ибо учебники пишут издавна, а подразделение предмета, сколь бы оно ни было проблематичным, освящено традицией. Я же, как правило, пишу не о том, что существует, и не могу поэтому ссылаться (кроме редких исключений) на наглядные модели или на учебники, трактующие о будущем, ибо таковых я не знаю. По этим причинам я вынужден применять произвольную классификацию; в связи с этими трудностями я возвращаюсь к некоторым вопросам и проблемам по два и даже по три раза, а иногда даже рассматриваю по отдельности то, что мне следовало бы трактовать совместно с другими проблемами, но не удалось. После этих оправданий я изложу «систематику предмета», призванную отныне служить нам путеводной нитью. Названия, которые я буду употреблять, носят рабочий характер: это лишь сокращения, которые облегчают обзор рассматриваемых отраслей, и ничего более. Поэтому слово «систематика» я поставил в кавычки. Всё, что только может создать человек или иное разумное существо, мы охватываем названием «пантокреатика». С одной стороны, это получение информации, с другой — её использование в определённых целях. Подобное деление существует в некоторой степени и сегодня, ему соответствует разграничение науки и технологии. В будущем это положение изменится в том отношении, что получение информации будет автоматизировано. Системы получения информации не будут определять направление действия; они подобны мельнице, изготавливающей муку; что из этой муки получится, это уж дело пекаря (то есть технолога). Однако какое зерно сыпать в мельничные жернова, решает не только и не столько пекарь, сколько управляющий мельницей; вот этим-то управляющим и будет наука. Сам процесс размола зерен — это добывание информации. Как можно себе представить такое добывание, об этом мы скажем отдельно. Та часть пантокреатики, которая занимается использованием информации и которая возникла в результате синтеза общей теории физических и общей теории математических систем, делится на два раздела. Для краткости, а также некоторой наглядности первый из них назовём имитологией, а второй — фантомологией. Они частично перекрываются. Можно было бы, конечно, пуститься в уточнения; так, например, сказать, что имитология — это конструкторское искусство, опирающееся на такую математику, на такие алгоритмы, которые можно выделить из Природы, тогда как фантомология — это воплощение в действительность таких математических структур, которым в Природе ничто не соответствует. Но это предполагало бы, что Природа в основе своей математична, а мы таких постулатов принимать не хотим. Кроме того, это предполагало бы универсальность алгоритмизации, в высшей степени сомнительную. Поэтому благоразумней не форсировать наши формулировки. Имитология — это более ранняя стадия пантокреатики, вытекающая из уже практикуемого в наши дни моделирования реальных явлений в научных теориях, цифровых машинах и другого. Она охватывает осуществление как естественных материальных процессов (звезда, извержение вулкана), так и явлений, не относящихся к таковым (атомный реактор, цивилизация). Совершенный имитолог — это тот, кто сумеет воспроизвести любое явление Природы или же явление, какого Природа, правда, спонтанно не создаёт, но создание которого является реальной возможностью. Почему уже процесс постройки машины я отношу к подражательной деятельности, станет ясно в дальнейшем. Между имитологией и фантомологией нет резкой границы. Как более поздняя, высшая фаза имитологии фантомология охватывает создание процессов все более отличных от естественных, вплоть до совершенно невозможных, то есть таких, которые ни при каких обстоятельствах произойти не могут, ибо они противоречат законам природы. Казалось бы, что такие процессы образуют пустое множество: ведь нельзя же реализовать нереализуемое. Мы постараемся, однако, хотя бы приближённо и весьма примитивно, показать, что эта «невозможность» не обязана быть абсолютной. Теперь мы покажем только, как можно представить себе первый шаг в сторону фантомологии. Модель атома должна служить для познания оригинала, то есть Природы. Мы построили модель с этой целью. Если модель не соответствует Природе, мы считаем, что она не представляет собой ценности. Так обстоит дело сегодня. Стратегию, однако, можно изменить. Эту модель можно использовать для других целей: по модели сделать атом, отличающийся от настоящего — строительный элемент «иной материи», материи, которая тоже будет отличаться от «настоящей». Модели и действительностьМоделирование — это подражание Природе, учитывающее немногие её свойства. Почему только немногие? Модель и оригинал были бы тождественны, если бы процессы, происходящие в них, совпадали. Этого не происходит. Результаты развития модели отличаются от действительного развития. На это различие могут влиять три фактора: упрощённость модели по сравнению с оригиналом, свойства модели, чуждые оригиналу, и, наконец, неопределённость самого оригинала. Когда мы имитируем живой мозг с помощью электронного, мы, кроме отображения сети нервных клеток (которое осуществляется с помощью некоторой электрической схемы), должны учесть ещё и такое явление, как память. Живой мозг не имеет отдельного резервуара памяти. Настоящие нейроны универсальны — память «рассеяна» по всему мозгу. Наша электросхема таких способностей не проявляет. Поэтому мы должны подключить к электронному мозгу специальные резервуары памяти (например, ферромагнитной). Кроме того, настоящий мозг отличается ещё некоторой «случайностью» поведения, непредсказуемостью действий, а электронная схема — нет. Как поступает кибернетик? Он встраивает в модель «генератор акцидентальности», который, включаясь, посылает случайно выбранные сигналы в глубь схемы. Такая «акцидентальность» была заранее предусмотрена: соответствующее дополнительное устройство использует таблицы случайных чисел или что-либо подобное. Итак, мы получили нечто вроде аналога «непредсказуемости», «свободной воли». После всего этого сходство параметров на выходах обеих систем, нервной и электронной, возросло. Но сходство возросло только относительно пар состояний «вход» — «выход». Сходство вовсе не увеличивается, а, напротив, уменьшается, если, кроме динамической связи «вход» — «выход», принять во внимание всю структуру обеих систем (или, иначе говоря, если учесть большее число переменных). У электронного мозга, правда, есть теперь «воля» и «память», но у настоящего мозга нет ведь ни генератора акцидентальности, ни отдельного резервуара памяти. Поэтому чем больше модель сближается с оригиналом в рамках некоторых имитируемых переменных, тем больше она отходит от него в области других переменных. Если бы мы захотели учесть ещё переменную возбудимость нейронов, обусловленную существованием порога возбудимости (причем организм реализует это одним лишь биохемизмом реакций), то должны были бы каждый переключающий элемент («нейристор»), то есть эквивалент нейрона, снабдить особой электрической схемой и так далее. Итак, переменные, входящие в модель, но не обнаруживаемые в самом моделируемом явлении, мы считаем несущественными. Это частный случай общего метода сбора информации, при котором всегда производится предварительный выбор. Например, для лица, которое ведёт обычный разговор, потрескивания в телефонной трубке — это «шум», но для инженера-связиста, проверяющего линию, именно этот шум и может быть информацией (этот пример заимствован у Эшби). Поэтому, если бы мы захотели промоделировать какое-либо явление с учётом всех его переменных (предположим на время, что это возможно), нам пришлось бы создать систему, обогащённую по сравнению с оригиналом теми дополнительными переменными, которые свойственны самой моделирующей системе, но которых нет у оригинала. Вот почему применение цифрового моделирования плодотворно до тех пор, пока количество переменных мало. При увеличении их числа этот метод быстро достигает предела своей применимости. Поэтому такой способ моделирования должен уступить место другому. Теоретически наиболее экономично моделировать одно явление другим таким же явлением. Но возможно ли это? Чтобы промоделировать человека, его нужно, Наисовершеннейшей моделью яблока будет другое яблоко, а Космоса — другой Космос. Это смахивает на reductio ad absurdum имитологической практики, однако не будем спешить с таким приговором. Ключевой вопрос звучит так: существует ли нечто такое, что, не будучи верным (модельным) повторением явления, содержало бы больше информации, чем само это явление? Ну, конечно же, существует. Это — научная теория. Она охватывает целый класс явлений; она говорит о каждом из них и одновременно о всех вместе. Безусловно, теория не учитывает многих переменных данного явления, но они для достижения поставленной цели несущественны. Здесь, однако, заключена новая трудность: давайте поставим вопрос, содержит ли теория лишь ту информацию, которую мы в неё сами вложили (создавая её на основе фактов, почерпнутых из наблюдений, и на основе других теорий, например теории измерений), или же она может содержать больше информации? Это невозможно? А ведь на основе теории физического вакуума квантовая теория поля предсказала ряд явлений. Кроме теории бета-распада, отсюда родились результаты в теории сверхтекучести (жидкого гелия), а также теории твёрдого тела. Если в общем случае теория должна была предвидеть явление X, а потом оказалось, что из неё дедуктивно выводимы ещё и другие явления, о существовании которых мы до сих пор ничего не знали, то откуда же взялась в ней эта «дополнительная» информация? Она появилась потому, что изменения в мире, в общем-то говоря, взаимосвязаны. Благодаря этой взаимной связи мы «додумались» до одного, а оно «потянуло за собой» другое. Это звучит убедительно, но как же обстоит дело с балансом информации? Мы вложили в теорию x битов информации, а получаем x + n? Не значит ли это, что достаточно сложная система (такая, как мозг) может создавать дополнительную информацию — большую по сравнению с имевшейся в предыдущий момент, причём без притока информации извне? Но ведь это был бы подлинный информационный perpetuum mobile. К сожалению, этого нельзя решить, опираясь на современную теорию информации. Количество информации тем больше, чем меньшей была вероятность прихода определённого сигнала. Поэтому если бы поступило сообщение, что звезды состоят из швейцарского сыра, количество информации было бы попросту огромным, ибо получение такого сигнала чрезвычайно маловероятно. Но тут специалист справедливо упрекнёт, что мы перепутали два вида информации: селективную, то есть определяемую выбором из множества возможных сигналов (звезды состоят из водорода, из энтелехии, из собачатины, из сыра и так далее), которая не имеет ничего общего с истинностью, то есть с соответствием информации определённому явлению, и структурную информацию, которая является отображением некоторой ситуации. Сенсационное сообщение о том, что в звездах идёт процесс ферментации сыра, содержит много селективной информации и нуль структурной, так как неверно, что звезды состоят из сыра. Прекрасно. А теперь возьмём теорию физического вакуума. Из неё следует, что бета-распад происходит так-то и так-то (что истинно) и что заряд электрона бесконечно велик (что ложно). Первый результат, однако, настолько ценен для физика, что с лихвой окупает ложность второго. Теория информации остаётся равнодушной к этому выбору физика, поскольку она не учитывает ценности информации, в частности информации в её структурном виде. Кроме того, никакая теория не существует «сама по себе», не является «суверенной»; всякая теория частично вытекает из других, а частично с ними объединяется. Следовательно, количество содержащейся в ней информации очень трудно измерить, потому что, например, информация, содержащаяся в знаменитой формуле Е = mc2 (В. В. Парин, P. M. Баевский, Кибернетика в медицине и физиологии, Медгиз, 1963. — Прим. ред.), «попадает» в неё из огромного количества других формул и теорий. Может быть, однако, теории и модели явлений нужны лишъ сегодня? Может быть, мудрец с другой планеты в ответ молчаливо вручил бы нам обрывок лежащей на земле старой подметки, давая этим понять, что всю истину о Вселенной можно вычитать из этого кусочка материи? Остановимся ненадолго на этой старой подметке. С этой шуткой могут быть связаны забавные последствия. Возьмём уравнение четыре + x = 7. Малосообразительный ученик не знает, как добраться до значения x, хотя результат уже «сидит» в уравнении, только он скрыт от затянутых пеленой глаз и «сам» может появиться лишь после элементарного преобразования. Спросим тогда, как и надлежит ересиархам, не то же ли самое происходит и с Природой. Не «вписаны» ли в материю все её потенциальные преобразования (то есть возможность создания звёзд, квантолетов, швейных машин, роз, шелкопрядов и комет)? В таком случае, взяв основной кирпичик Природы — атом водорода, — можно бы из него «дедуктивно» вывести все эти возможности (начиная со скромной возможности синтезировать сто химических элементов и кончая возможностью создания систем в триллион раз более одухотворённых, чем человек). А также вывести то, что нереализуемо (сладкую поваренную соль NaCl, звезды диаметром в квадрильон миль и так далее). С этой точки зрения в материю заложены все её возможности и невозможности (запреты), только мы не умеем расшифровать её «код». Материя в этом случае была бы, собственно говоря, подобна математической задаче, а мы уподобились бы тому неспособному ученику, который не может добыть из неё «всю информацию», хотя она там и содержится. То, что мы здесь говорили, есть попросту тавтологическая онтология… Плагиат и созиданиеЧто же означали неслыханные и возмутительные мысли, которые мы осмелились высказать? Не более и не менее чем то, что из атома можно «вычитать» его «космические» возможности, возможности «эволюционные», «цивилизационные» и вообще всякие. Ясно, что это не было сказано всерьёз. До настоящего времени свойства поваренной соли мы не можем вывести из свойств атомов натрия и хлора, взятых по отдельности. Можем вывести лишь некоторые свойства. Но названная нами столь по-ученому «тавтологическая онтология» является не более чем проектом создания мира, иного чем наш, в котором невозможно вывести «все» из элементарного кирпичика материи, — мира иного, чем наш мир. Более реальным кажется следующий подход: нельзя ли получить конечный результат естественных процессов не посредством полного плагиата у Природы, а войдя в поток этих процессов, так сказать, «сбоку». В таком случае, приняв отправное положение, полностью отличное от того, с которого стартовала Природа, можно было бы после некоторого числа шагов дойти до результата, совпадающего с результатом, полученным ей. Примитивный пример. Пусть нам нужно произвести сейсмический толчок земной коры. Вместо того чтобы «сооружать» вулканы, и так далее, как это делает Природа, мы вызываем толчок взрывом тротилового заряда и получаем нужный эффект. Таким образом, конечные результаты явления (серии явлений) не определяют однозначно всю цепь следствий и причин, которая приводит к этому конечному результату. Менее примитивный пример. Гриб Penicillum notatum вырабатывает пенициллин. Вместо того чтобы выращивать гриб, экстрагировать из него необходимые компоненты и так далее, мы берём некоторые простые химические вещества и синтезируем из них пенициллин. Пример, весьма близкий к реализации. Наибольшее количество энергии можно получить при процессе аннигиляции, то есть соединения материи с антиматерией. Антиматерия в нашей метагалактике, насколько нам известно, не встречается. Правда, мы научились уже искусственно создавать некоторые её частицы. Если бы мы умели производить её в промышленном масштабе, то хранящаяся в особых условиях, например «в магнитных бутылях» (предохраняющих её от немедленной аннигиляционной реакции), антиматерия была бы наиболее эффективным топливом для космолетов. Интересно, что в данном случае образуется определённый вид материи, в природе обычно не встречающийся. Пример, полностью нереальный в настоящее время. В определённой части головки сперматозоида — в объёме порядка трёх тысячных миллиметра — находится «закодированный» на языке химических молекул план конструкции мозга человека, который может вырасти из этого сперматозоида после его соединения с яйцеклеткой. Этот план охватывает «производственный процесс» и «намётки по реализации». В микроскопическом объёме помещается информация о том, что должно быть сделано, как это должно быть сделано, и, наконец, механизм, который всё это может сделать. Представим себе, что нам удалось побудить сперматозоид, а лучше сказать яйцеклетку (с точки зрения количества информации это безразлично; оплодотворение способствует Гетерозиготности популяции, и поэтому эволюция сформировала полы, но можно побудить яйцеклетку к девородству, воздействуя на неё соответствующим образом), к эмбриогенезу. Вначале развивается весь плод, но в некоторой фазе этого развития мы удаляем «лишние» для наших целей части и заботимся лишь о том, чтобы сформировался мозг. Полученный таким образом «нейронный препарат» мы переносим в питательную среду, где он срастается с другими «препаратами», то есть частями мозга, и, наконец, в результате образуется нечто вроде «искусственного мозга», созданного из естественной ткани. Здесь мы можем столкнуться, скажем, с обвинениями этического характера. Чтобы их избежать, мы отказываемся от использования человеческой яйцеклетки, а только копируем её наследственность, переписываем всю наследственную информацию, содержащуюся в ней. Сегодня мы знаем, по крайней мере в принципе, как это следует делать. Это несколько похоже на печатание книги с матрицы или на снятие оттисков с клише. Роль бумаги выполняет синтезированная нами (а значит, не происходящая из организма) система рибонуклеиновых кислот; яйцеклетка даёт только «инструкцию», как эти молекулы кислот соединять. Следовательно, мы сняли «отливку» с хромосом яйцеклетки, подобно тому как снимается гипсовая отливка со скульптуры. И только вот эти наши «искусственные» хромосомы мы делаем исходным пунктом развития. А если и это кому-нибудь не понравится, мы пойдём ещё более окольным путем: хромосомную информацию яйцеклетки мы перепишем на бумагу языком химических обозначений и формул, в соответствии с ней синтезируем хромосомы, и полученная таким образом «лабораторная яйцеклетка» пойдёт в эмбриогенетическое «производство». Как видно, здесь наши действия стирают разницу между «естественным» и «искусственным». Поэтому моделирование позволяет перейти границу между плагиатом и созиданием, так как точное знание наследственного кода позволяет, конечно, вносить в этот код произвольные изменения. Можно было бы не только по желанию запрограммировать цвет глаз ребёнка, но и, опираясь на точное знание «генных кодов», которые реализуют в мозге определённые «таланты», массово производить «матрицы способностей» и с их помощью «встраивать» выбранные родителями черты характера (музыкальность, математический талант и так далее) в наследственную плазму любой яйцеклетки. Мы видим, что нам излишне знать весь путь эволюции, пройденный Природой, прежде чем она сформировала человека. Не нужна нам колоссальная по объёму информация об отдельных этапах эволюции, о синантропе, о мустьерской или ориньякской культуре; произведя «модель» сперматозоида или яйцеклетки, «эквивалентную» оригиналу, мы получим генотип, более совершенный по сравнению со всеми оригиналами (в силу концентрации ценных генетических черт), благодаря чему мы открываем себе «боковой вход» в процесс образования человеческого организма. После этого, осмелев, мы создаём поочерёдно все более совершенные модели и доходим до хромосомной схемы, не содержащей генов, вызывающих склонность к функциональным и органическим заболеваниям, но зато великолепно уравновешенную во всех отношениях (как телесных, так и духовных). И наконец, вызывая управляемые мутации (то есть изменяя данные Природой коды наследственности, изменяя химическую структуру отдельных генов), мы можем получить развитие черт, до сих пор у рода Homo не известных (образование жабр, позволяющих жить под водой; увеличение мозга и так далее). Мы не намеревались посвящать сейчас внимание этой «автоэволюции» человека. Перспективы её, равно как и критика решений эволюции, представлены в конце книги. Хотелось бы только показать, как может действовать имитология, соревнующаяся с Природой. Область имитологииЧеловек обычно создавал альтернативные, взаимоисключающие теории. В биологии преформизм боролся с эпигенезом, теория естественного отбора — с представлением о наследуемости приобретённых признаков; в физике шла борьба между детерминизмом и индетерминизмом. Такие теории исключают друг друга на «низком» уровне: молчаливо предполагается, что одна из них «окончательна». Обычно оказывается, что одна из теорий была ближе к действительности, но представляла собой лишь дальнейший шаг по правильному пути и ничего более. В эпоху продвинувшейся далеко вперёд имитологии всё это отойдет к предыстории науки. «Лучшей» теорией будет такая, благодаря которой мы сумеем руководить эволюцией, изменять темп и пределы регенерационной способности организма, оркестровать наследственные свойства зародышей, и всё это окажется возможным намного раньше, чем мы научимся, например, создавать путём синтеза хромосомный аппарат ядра. Все науки конструируют теории, но отношение к ним в различных отраслях неодинаково. Кажущееся совершенство астрономических теорий является следствием того, что изоляция систем, исследуемых этой областью науки, от их окружения исключительно велика. Однако при спаде такой изоляции, как, например, в задаче с несколькими влияющими друг на друга телами, получить решение становится трудно. «Примерочный» характер теории особенно хорошо виден там, где объём наблюдаемых явлений ничтожно мал по сравнению с объёмом самого явления (космогония, биогенез, планетогенез). А вот в термодинамике или в хромосомной теории кажется, что мы имеем дело с чем-то большим, чем сопоставление наших домыслов с Природой, что эти теории содержат уже почти «чистейшую» истину. Не могу сказать, сгладит ли имитология эту разницу. В конце-то концов нынешний Космос действительно мог прийти «с разных сторон»; иначе говоря, то, что мы наблюдаем, могло образоваться различными путями. Многое предстоит ещё открыть, и не стоит брать на себя дополнительный риск, пророчествуя о будущем развитии отдельных наук. Имитология, как мы знаем, не должна быть «полным подражательством», разве что кто-нибудь от неё этого потребует. Мы знаем, что количество переменных, которыми имитология снабдит «прокручиваемую» модель, будет изменяться в зависимости от цели, которой должна служить вся эта модельная продукция. В результате для данной определённой цели существует некоторый оптимум информации, необходимый для достижения этой цели; этот оптимум отнюдь не совпадает с максимумом. Согласно имитологии, всё, что бы человек ни делал, есть моделирование. Это похоже на бессмыслицу. Моделировать явления, происходящие в звездах или живых организмах, — пожалуйста! Но считать «моделированием» создание атомного реактора? Электроплитки? Ракеты? Попытаемся дать весьма упрощённую классификацию «моделирования».
Таким образом, говоря с наиболее общих позиций, Природа сопрягает между собой различные процессы. Мы можем ей в этом подражать и делаем это. Мы сопрягаем различные процессы всегда и везде: вращая мельницы силой воды, плавя руду, отливая металл, строя металлообрабатывающие станки, сея хлопок и делая из него одежду. В результате всего этого Электроны ведут себя в электрическом поле так-то и так-то; мы комбинируем этот процесс с другими процессами, и вот возникает телевидение, или ферромагнитная память, или процессы, присходящие в квантовых усилителях (мазеры, лазеры). Всегда, однако, мы подражаем Природе. Но это нужно правильно понимать. Стадо пробегающих слонов и жираф могло бы так растоптать и размесить глину, чтобы в ней образовался «негатив автомобиля», а близлежащий вулкан мог бы выбросить расплавленную магнетитовую руду. Она влилась бы в «форму» и так возник бы «автомобиль» или нечто его напоминающее. Это, конечно, неслыханно маловероятно. Но не невозможно с точки зрения термодинамики. Последствия имитологии сводятся к увеличению вероятности событий, «естественное» возникновение которых чрезвычайно маловероятно, но всё же возможно. Теоретически возможно «спонтанное» возникновение деревянного колеса, миски, дверной ручки, автомобиля. Добавим, что вероятность такого «синтеза» путём внезапного соединения атомов железа, меди, алюминия и так далее несравненно больше, чем вероятность спонтанного создания живого организма посредством сближения и занятия атомами правильных мест, при которых возникает живая Амёба или наш старый знакомый мистер Смит. Автомобиль состоит тысяч из десяти с чем-то частей, Амёба — из миллионов. При этом положения, моменты кристаллизации отдельных атомов и твёрдых тел в раме автомобиля или в его двигателе не имеют значения для его работы. Напротив, положения и свойства молекул, из которых «сделана» амеба, имеют решающее значение для её существования. Так почему же возникли амёбы, а не автомобили? А потому, что спонтанно со значительной вероятностью может возникнуть только система, с самого начала наделённая свойствами самоорганизации. А также потому, что такими были «начальные условия» на Земле. Теперь мы сформулируем некоторый общий тезис. Конструкторское распределение вероятностей в случае Природы полностью отличается от распределения в случае человеческого созидания, хотя второе должно содержаться в первом. Распределение вероятностей по нормальному закону, характерное для Природы, приводит во всём Космосе к сверхсуперастрономически ничтожным вероятностям возникновения в результате спонтанных событий кастрюль или вычислительных машин. Обчистив все мёртвые планеты и выгоревшие звёздные карлики, мы, быть может, и нашли бы несколько «акцидентальных ложек» или даже спонтанно выкристаллизовавшуюся оцинкованную консервную банку. Но того, чтобы эта банка чисто случайно содержала свинину или что-нибудь хоть отчасти съедобное, нам пришлось бы ждать целую вечность. Эти явления, однако, не представляют собой чего-то «невозможного» в том смысле, что им препятствуют запреты Природы (или же законы, так как каждый закон, будучи указанием, чтобы нечто происходило так-то и так-то, вместе с тем запрещает, чтобы оно происходило иначе). Таким образом, наше конструкторское искусство содержится как частный случай в границах потенциального конструкторского искусства Природы, с тем лишь существенным дополнением, что оно находится там, где значения вероятностей резко уменьшаются, становясь чем-то несравнимо микроскопическим. Так мы приходим к состояниям, термодинамически весьма невероятным — таким, как ракета или телевизор. Однако там, где Природа как строитель находится «в своей стихии», мы наиболее слабы, так как не умеем (ещё не умеем) вызывать процессы самоорганизации в таком масштабе и столь искусно, как это делает она. Впрочем, если бы Природа не умела этого делать, не было бы ни читателей этой книги, ни её автора. До сих пор из того, что конструктивно возможно, человек интересовался лишь некоторым узеньким отрезком «производственного спектра Природы». Мы не пытались создавать ни метеоров, ни комет, ни Сверхновых звёзд (хотя в этом плане благодаря водородной бомбе мы уже на вернейшем пути). Но нельзя ли каким-то образом перешагнуть границы, установленные Природой? Можно, конечно, выдумывать Космосы и Природы, отличающиеся от наших. Но как их реализовать? Эту тему мы откладываем — но не слишком надолго. |
|
Примечания: |
|
---|---|
Список примечаний представлен на отдельной странице, в конце издания. |
|