Гуманитарные технологии Информационно-аналитический портал • ISSN 2310-1792
Гуманитарно-технологическая парадигма

Моделирование

Наименование: Моделирование (образовано от латинского слова: modus — мера, способ, образец)
Определение: Моделирование — это метод воспроизведения и исследования определённого фрагмента действительности (предмета, явления, процесса, ситуации) или управления им, основанный на представлении объекта с помощью модели.
Редакция: Информация на этой странице периодически обновляется. Последняя редакция: 30.10.2016.

Моделирование — это метод воспроизведения и исследования определённого фрагмента действительности (предмета, явления, процесса, ситуации) или управления им, основанный на представлении объекта с помощью его копии или подобия — модели (см. Модель). Модель обычно представляет собой либо материальную копию оригинала, либо некоторый условный образ, представленный в абстрактной (мысленной или знаковой) форме и содержащий существенные свойства моделируемого объекта. Процедуры создания моделей широко используются как в научно-теоретических, так и в прикладных сферах человеческой деятельности.

В научном познании (см. Наука) модель рассматривается как «объект-подобие» или «объект-заместитель» объекта-оригинала, воспроизводящий определённые его характеристики. В этом смысле модель всегда соответствует объекту-оригиналу — в тех свойствах, которые подлежат изучению, но в то же время отличается от него по ряду других признаков, что делает модель удобной для исследования изучаемого объекта. Результаты разработки и исследования моделей при определённых условиях, принимаемых в методологии науки и специфических для различных областей и типов моделей, распространяются на оригинал. Использование метода моделирования в научном познании диктуется необходимостью раскрыть такие стороны объектов, которые либо невозможно постигнуть путём непосредственного изучения, либо непродуктивно изучать их таким образом в силу каких-либо ограничений.

В научном познании возможны два способа моделирования:

  1. Эмпирический способ моделирования — подразумевает воссоздание эмпирически выявленных свойств и связей объекта в его модели.
  2. Теоретический способ моделирования — подразумевает теоретическое воссоздание объекта в его модели.

Модели, применяемые в научном познании, разделяются на два больших класса:

  1. Материальные модели представляют собой природные объекты, подчиняющиеся в своём функционировании естественным законам. Подразделяются на два основных вида: предметно-физические и предметно-математические модели.
  2. Идеальные модели представляют собой идеальные образования, зафиксированные в соответствующей знаковой форме и функционирующие по законам логики мышления, отражающей мир. Подразделяются на два основных вида: идеализированные модельные представления и знаковые модели.

Соответственно указанным различениям выделяют основные разновидности моделирования. Каждое из них применяется в зависимости от особенностей изучаемого объекта и характера познавательных задач.

Предметно-физическое моделирование широко используется как в научной практике, так и в сфере материального производства. Такое моделирование всегда предполагает, что модель должна быть сходна с оригиналом по физической природе и отличаться от него лишь численными значениями ряда параметров. Наряду с этим в практике научного исследования часто используется и такой вид моделирования, при котором модель строится из объектов иной физической природы, чем оригинал, но описывается одинаковой с ним системой математических зависимостей. В отличие от предметно-физического этот вид моделирования называют предметно-математическим. Предметная модель становится здесь объектом испытания и изучения, в результате которого создаётся её математическое описание. Последнее затем переносится на моделируемый объект, характеризуя его структуру и функционирование.

В развитой науке, особенно при переходе к теоретическим исследованиям, широко используется моделирование с применением идеальных моделей. Этот способ получения знаний об объектах может быть охарактеризован как моделирование посредством идеализированных представлений. Он является ведущим инструментом теоретического исследования. Активно используя модельные представления, научное исследование вместе с тем применяет и так называемое знаковое моделирование, которое основано на построении и испытании математических моделей некоторого класса явлений, без использования при этом вспомогательного физического объекта, который подвергается испытанию. Последнее отличает знаковую модель от предметно-математической. Такой вид моделирования иногда называют также абстрактно-математическим. Он требует построения знаковой модели, представляющей некоторый объект, где отношения и свойства объекта представлены в виде знаков и их связей. Эта модель затем исследуется чисто логическими средствами, и новое знание возникает в результате дедуктивного развёртывания модели без обращения к предметной области, на основании которой выросла данная знаковая модель. В абстрактно-математическом моделировании модель — это конструкция, изоморфная моделируемой системе. При таком моделировании каждому объекту системы ставится в соответствие определённый элемент моделирующей конструкции, а свойствам и отношениям объектов соответствуют свойства и отношения элементов.

Классическими примерами моделей, основанных на изоморфизме, являются модели аксиоматических систем в математике. Они задают семантику формальных построений и создают возможность для содержательной интерпретации аксиом. Сами аксиомы, как и следствия из них, считаются предложениями некоторого формального языка. Кроме того, задана область интерпретаций, представляющая собой множество индивидных объектов. Изоморфизм задаётся функцией, сопоставляющей каждому имени языка некоторый объект из заданного множества, а каждому выражению языка некоторое отношение объектов этого же множества. Если любое высказывание, которое выведено из аксиом, истинно в области интерпретаций (то есть соответствует реальным отношениям объектов), то эта область называется моделью системы аксиом. Моделирование в математике используется, например, для доказательства непротиворечивости формальных систем.

Этот вид моделирования используется не только в чистой математике, но также при математическом описании природных, общественных, технологических и других сложных систем. Смысл такого описания состоит в том, что отношения между элементами системы выражаются с помощью уравнений, причём так, чтобы каждому термину содержательного описания системы соответствовала какая-либо величина (константа или переменная) или функция, фигурирующая в уравнении. Сами уравнения называются при этом моделью. Как правило, абстрактно-математическое моделирование требует абстракции (см. Абстракция), то есть отвлечения от некоторых свойств и отношений в моделируемой системе. Это позволяет достичь общности модели и утверждать, что она, игнорируя частности, описывает достаточно широкий круг процессов или систем. К тому же без таких упрощений моделирование оказывается бессмысленным (из-за чрезмерной сложности модели) или вообще невозможным. Другим важным гносеологическим условием моделирования является измеримость всех описываемых объектов и отношений. Чтобы построить модель, необходимо найти их числовое представление. Всякий моделируемый процесс должен быть полностью охарактеризован с помощью параметров, поддающихся измерению.

Другая разновидность моделирования с применением идеальных моделей основана на понятии «чёрный ящик». Этим термином принято называть объект, внутренняя структура которого недоступна для наблюдения и о котором можно судить только по его внешнему поведению, в частности по тому, как он преобразует приходящие на вход сигналы. Если некоторая система слишком сложна, то нет смысла искать её математическое описание. Проще попытаться построить вместо неё другую систему, которая при заданных условиях будет вести себя точно так же. Такое моделирование часто используется при исследовании отдельных систем живых организмов с помощью компьютерной симуляции. Описать работу живого организма уравнениями крайне тяжело или вообще невозможно. Но возможно построить компьютерную схему, которая при подаче на вход определённого стимула давала бы на выходе реакцию, тождественную или близкую к реакции моделируемой системы. Если спектр совпадающих входных и выходных процессов достаточно широк, то можно ожидать, что построенная схема точно воспроизводит исследуемый объект.

Библиография:
  1. Булос Дж., Джефри Р. Вычислимость и логика. — М., 1994.
  2. Гастев Ю. А. Гомоморфизмы и модели. Логико-алгебраические аспекты моделирования. — М., 1975.
  3. Кейслер Г., Чэн Ч. Ч. Теория моделей. — М., 1977.
  4. Стёпин В. С., Елсуков А. Н. Методы научного познания. — Минск, 1974.
  5. Стёпин B. C. Теоретическое знание. Структура, историческая эволюция. — М., 2000.
  6. Робинсон А. Введение в теорию моделей и метаматематику алгебры. — М., 1967.
  7. Рузавин Г. И. Методология научного познания. — М., 2012.
  8. Чжао Юань-жень. Модель в лингвистике и модель вообще. — В книге.: Математическая логика и её применения. — М., 1965.
Источник: Моделирование. Гуманитарная энциклопедия [Электронный ресурс] // Центр гуманитарных технологий, 2010–2016 (последняя редакция: 30.10.2016). URL: http://gtmarket.ru/concepts/7025
Текст статьи: © В. С. Стёпин. Г. Б. Гутнер. Ф. И. Голдберг. Подготовка электронной публикации и общая редакция: Центр гуманитарных технологий.
Ограничения: Настоящая публикация охраняется в соответствии с законодательством Российской Федерации об авторском праве и предназначена только для некоммерческого использования в информационных, образовательных и научных целях. Копирование, воспроизведение и распространение текстовых, графических и иных материалов, представленных на данной странице, не разрешено.
Реклама: